Shollie M. Falkenberg, Alexa Buckley, Paola Boggiatto
{"title":"PrimeFlow RNA检测作为SARS-CoV-2单次和双次感染检测方法的评价","authors":"Shollie M. Falkenberg, Alexa Buckley, Paola Boggiatto","doi":"10.1007/s10616-023-00608-9","DOIUrl":null,"url":null,"abstract":"<p>Given the implications of increased transmissibility, virulence, host range, and immune escapes of emerging variants of SARS-CoV-2, developing in vitro models that allow for detection of variants and differences in infection dynamics is important. The objective of this study, was to evaluate the PrimeFlow RNA in-situ assay as a method of detection for multiple strains of SARS-CoV-2. Evaluation of detection and infection statuses included single infections with an Alpha, Delta, or Omicron variants and dual infections with Alpha/Omicron or Delta/Omicron. RNA probes specific for the Spike protein coding region, were designed (omicron or non-omicron specific). SARS-CoV-2 RNA was detected in greater frequency in the Vero E6 and minimally in the fetal deer testicle cell lines by flow cytometry using this approach for viral detection of multiple variants. Most evident in the Vero E6 cells, 24 h post infection both Alpha and Delta predominated over Omicron in dual infections. This is the first report using the PrimeFlow assay for the detection of SARS-CoV-2 at the single-cell level and as a potential model for competition of variants utilizing infection dynamics in cell culture.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the PrimeFlow RNA assay as a method of detection of SARS-CoV-2 single and dual Infections\",\"authors\":\"Shollie M. Falkenberg, Alexa Buckley, Paola Boggiatto\",\"doi\":\"10.1007/s10616-023-00608-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given the implications of increased transmissibility, virulence, host range, and immune escapes of emerging variants of SARS-CoV-2, developing in vitro models that allow for detection of variants and differences in infection dynamics is important. The objective of this study, was to evaluate the PrimeFlow RNA in-situ assay as a method of detection for multiple strains of SARS-CoV-2. Evaluation of detection and infection statuses included single infections with an Alpha, Delta, or Omicron variants and dual infections with Alpha/Omicron or Delta/Omicron. RNA probes specific for the Spike protein coding region, were designed (omicron or non-omicron specific). SARS-CoV-2 RNA was detected in greater frequency in the Vero E6 and minimally in the fetal deer testicle cell lines by flow cytometry using this approach for viral detection of multiple variants. Most evident in the Vero E6 cells, 24 h post infection both Alpha and Delta predominated over Omicron in dual infections. This is the first report using the PrimeFlow assay for the detection of SARS-CoV-2 at the single-cell level and as a potential model for competition of variants utilizing infection dynamics in cell culture.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-023-00608-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-023-00608-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Evaluation of the PrimeFlow RNA assay as a method of detection of SARS-CoV-2 single and dual Infections
Given the implications of increased transmissibility, virulence, host range, and immune escapes of emerging variants of SARS-CoV-2, developing in vitro models that allow for detection of variants and differences in infection dynamics is important. The objective of this study, was to evaluate the PrimeFlow RNA in-situ assay as a method of detection for multiple strains of SARS-CoV-2. Evaluation of detection and infection statuses included single infections with an Alpha, Delta, or Omicron variants and dual infections with Alpha/Omicron or Delta/Omicron. RNA probes specific for the Spike protein coding region, were designed (omicron or non-omicron specific). SARS-CoV-2 RNA was detected in greater frequency in the Vero E6 and minimally in the fetal deer testicle cell lines by flow cytometry using this approach for viral detection of multiple variants. Most evident in the Vero E6 cells, 24 h post infection both Alpha and Delta predominated over Omicron in dual infections. This is the first report using the PrimeFlow assay for the detection of SARS-CoV-2 at the single-cell level and as a potential model for competition of variants utilizing infection dynamics in cell culture.