{"title":"从井眼GPR数据建模和推断裂缝曲率:来自瑞士Bedretto实验室的案例研究","authors":"Daniel Escallon, Alexis Shakas, Hansruedi Maurer","doi":"10.1002/nsg.12286","DOIUrl":null,"url":null,"abstract":"Fracture curvature has been observed from the millimetre to the kilometre scales. Nevertheless, characterizing curvature remains challenging due to data sparsity and geometric ambiguities. As a result, most numerical models often assume planar fractures to ease computations. To address this limitation, we present a novel approach for inferring fracture geometry from travel-time data of electromagnetic or seismic waves. Our model utilizes co-kriging interpolation of control points in a 3D surface mesh to simulate fracture curvature effectively, resulting in an unstructured triangular grid. We then refine the fracture surface into a structured grid with equidistant elements so that both small-scale heterogeneities and large-scale curvature can be modelled. To constrain the fracture geometry, we perform a deterministic travel-time inversion to optimally place these control points. We validate our methodology with synthetic data and address its limitations. Finally, we infer the geometry of a large (more than 200 m) fracture observed in single-hole ground-penetrating radar (GPR) field data. The fracture surface closely agrees with borehole televiewer observations and is also constrained far from the boreholes. Our modelling approach can be trivially adapted to multi-offset GPR or active seismic data.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling and inferring fracture curvature from borehole GPR data: Case study from the Bedretto Laboratory, Switzerland\",\"authors\":\"Daniel Escallon, Alexis Shakas, Hansruedi Maurer\",\"doi\":\"10.1002/nsg.12286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fracture curvature has been observed from the millimetre to the kilometre scales. Nevertheless, characterizing curvature remains challenging due to data sparsity and geometric ambiguities. As a result, most numerical models often assume planar fractures to ease computations. To address this limitation, we present a novel approach for inferring fracture geometry from travel-time data of electromagnetic or seismic waves. Our model utilizes co-kriging interpolation of control points in a 3D surface mesh to simulate fracture curvature effectively, resulting in an unstructured triangular grid. We then refine the fracture surface into a structured grid with equidistant elements so that both small-scale heterogeneities and large-scale curvature can be modelled. To constrain the fracture geometry, we perform a deterministic travel-time inversion to optimally place these control points. We validate our methodology with synthetic data and address its limitations. Finally, we infer the geometry of a large (more than 200 m) fracture observed in single-hole ground-penetrating radar (GPR) field data. The fracture surface closely agrees with borehole televiewer observations and is also constrained far from the boreholes. Our modelling approach can be trivially adapted to multi-offset GPR or active seismic data.\",\"PeriodicalId\":49771,\"journal\":{\"name\":\"Near Surface Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Near Surface Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/nsg.12286\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Near Surface Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/nsg.12286","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Modelling and inferring fracture curvature from borehole GPR data: Case study from the Bedretto Laboratory, Switzerland
Fracture curvature has been observed from the millimetre to the kilometre scales. Nevertheless, characterizing curvature remains challenging due to data sparsity and geometric ambiguities. As a result, most numerical models often assume planar fractures to ease computations. To address this limitation, we present a novel approach for inferring fracture geometry from travel-time data of electromagnetic or seismic waves. Our model utilizes co-kriging interpolation of control points in a 3D surface mesh to simulate fracture curvature effectively, resulting in an unstructured triangular grid. We then refine the fracture surface into a structured grid with equidistant elements so that both small-scale heterogeneities and large-scale curvature can be modelled. To constrain the fracture geometry, we perform a deterministic travel-time inversion to optimally place these control points. We validate our methodology with synthetic data and address its limitations. Finally, we infer the geometry of a large (more than 200 m) fracture observed in single-hole ground-penetrating radar (GPR) field data. The fracture surface closely agrees with borehole televiewer observations and is also constrained far from the boreholes. Our modelling approach can be trivially adapted to multi-offset GPR or active seismic data.
期刊介绍:
Near Surface Geophysics is an international journal for the publication of research and development in geophysics applied to near surface. It places emphasis on geological, hydrogeological, geotechnical, environmental, engineering, mining, archaeological, agricultural and other applications of geophysics as well as physical soil and rock properties. Geophysical and geoscientific case histories with innovative use of geophysical techniques are welcome, which may include improvements on instrumentation, measurements, data acquisition and processing, modelling, inversion, interpretation, project management and multidisciplinary use. The papers should also be understandable to those who use geophysical data but are not necessarily geophysicists.