具有$$\text {ReLU}^k$$激活函数的两层网络:巴伦空间和导数逼近

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Numerische Mathematik Pub Date : 2023-11-23 DOI:10.1007/s00211-023-01384-6
Yuanyuan Li, Shuai Lu, Peter Mathé, Sergei V. Pereverzev
{"title":"具有$$\\text {ReLU}^k$$激活函数的两层网络:巴伦空间和导数逼近","authors":"Yuanyuan Li, Shuai Lu, Peter Mathé, Sergei V. Pereverzev","doi":"10.1007/s00211-023-01384-6","DOIUrl":null,"url":null,"abstract":"<p>We investigate the use of two-layer networks with the rectified power unit, which is called the <span>\\(\\text {ReLU}^k\\)</span> activation function, for function and derivative approximation. By extending and calibrating the corresponding Barron space, we show that two-layer networks with the <span>\\(\\text {ReLU}^k\\)</span> activation function are well-designed to simultaneously approximate an unknown function and its derivatives. When the measurement is noisy, we propose a Tikhonov type regularization method, and provide error bounds when the regularization parameter is chosen appropriately. Several numerical examples support the efficiency of the proposed approach.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"18 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-layer networks with the $$\\\\text {ReLU}^k$$ activation function: Barron spaces and derivative approximation\",\"authors\":\"Yuanyuan Li, Shuai Lu, Peter Mathé, Sergei V. Pereverzev\",\"doi\":\"10.1007/s00211-023-01384-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the use of two-layer networks with the rectified power unit, which is called the <span>\\\\(\\\\text {ReLU}^k\\\\)</span> activation function, for function and derivative approximation. By extending and calibrating the corresponding Barron space, we show that two-layer networks with the <span>\\\\(\\\\text {ReLU}^k\\\\)</span> activation function are well-designed to simultaneously approximate an unknown function and its derivatives. When the measurement is noisy, we propose a Tikhonov type regularization method, and provide error bounds when the regularization parameter is chosen appropriately. Several numerical examples support the efficiency of the proposed approach.</p>\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-023-01384-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-023-01384-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了两层网络与整流功率单元的使用,称为\(\text {ReLU}^k\)激活函数,用于函数和导数逼近。通过扩展和校准相应的巴伦空间,我们证明了具有\(\text {ReLU}^k\)激活函数的两层网络设计得很好,可以同时近似未知函数及其导数。当测量结果有噪声时,我们提出了一种Tikhonov型正则化方法,并在正则化参数选择适当时给出了误差范围。几个数值算例证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-layer networks with the $$\text {ReLU}^k$$ activation function: Barron spaces and derivative approximation

We investigate the use of two-layer networks with the rectified power unit, which is called the \(\text {ReLU}^k\) activation function, for function and derivative approximation. By extending and calibrating the corresponding Barron space, we show that two-layer networks with the \(\text {ReLU}^k\) activation function are well-designed to simultaneously approximate an unknown function and its derivatives. When the measurement is noisy, we propose a Tikhonov type regularization method, and provide error bounds when the regularization parameter is chosen appropriately. Several numerical examples support the efficiency of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
期刊最新文献
The pressure-wired Stokes element: a mesh-robust version of the Scott–Vogelius element Mathematical analysis of a finite difference method for inhomogeneous incompressible Navier–Stokes equations A moment approach for entropy solutions of parameter-dependent hyperbolic conservation laws Circuits of ferromagnetic nanowires Efficient approximation of high-frequency Helmholtz solutions by Gaussian coherent states
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1