Frankowski, Karina, Miyazaki, Katsumi, Brenneis, Georg
{"title":"基于微ct的海蜘蛛(Pycnogonida)中枢神经系统和中肠图谱首次揭示了家族水平上的进化趋势","authors":"Frankowski, Karina, Miyazaki, Katsumi, Brenneis, Georg","doi":"10.1186/s12983-022-00459-8","DOIUrl":null,"url":null,"abstract":"Pycnogonida (sea spiders) is the sister group of all other extant chelicerates (spiders, scorpions and relatives) and thus represents an important taxon to inform early chelicerate evolution. Notably, phylogenetic analyses have challenged traditional hypotheses on the relationships of the major pycnogonid lineages (families), indicating external morphological traits previously used to deduce inter-familial affinities to be highly homoplastic. This erodes some of the support for phylogenetic information content in external morphology and calls for the study of additional data classes to test and underpin in-group relationships advocated in molecular analyses. In this regard, pycnogonid internal anatomy remains largely unexplored and taxon coverage in the studies available is limited. Based on micro-computed X-ray tomography and 3D reconstruction, we created a comprehensive atlas of in-situ representations of the central nervous system and midgut layout in all pycnogonid families. Beyond that, immunolabeling for tubulin and synapsin was used to reveal selected details of ganglionic architecture. The ventral nerve cord consistently features an array of separate ganglia, but some lineages exhibit extended composite ganglia, due to neuromere fusion. Further, inter-ganglionic distances and ganglion positions relative to segment borders vary, with an anterior shift in several families. Intersegmental nerves target longitudinal muscles and are lacking if the latter are reduced. Across families, the midgut displays linear leg diverticula. In Pycnogonidae, however, complex multi-branching diverticula occur, which may be evolutionarily correlated with a reduction of the heart. Several gross neuroanatomical features are linked to external morphology, including intersegmental nerve reduction in concert with trunk segment fusion, or antero-posterior ganglion shifts in partial correlation to trunk elongation/compaction. Mapping on a recent phylogenomic phylogeny shows disjunct distributions of these traits. Other characters show no such dependency and help to underpin closer affinities in sub-branches of the pycnogonid tree, as exemplified by the tripartite subesophageal ganglion of Pycnogonidae and Rhynchothoracidae. Building on this gross anatomical atlas, future studies should now aim to leverage the full potential of neuroanatomy for phylogenetic interrogation by deciphering pycnogonid nervous system architecture in more detail, given that pioneering work on neuron subsets revealed complex character sets with unequivocal homologies across some families.","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A microCT-based atlas of the central nervous system and midgut in sea spiders (Pycnogonida) sheds first light on evolutionary trends at the family level\",\"authors\":\"Frankowski, Karina, Miyazaki, Katsumi, Brenneis, Georg\",\"doi\":\"10.1186/s12983-022-00459-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pycnogonida (sea spiders) is the sister group of all other extant chelicerates (spiders, scorpions and relatives) and thus represents an important taxon to inform early chelicerate evolution. Notably, phylogenetic analyses have challenged traditional hypotheses on the relationships of the major pycnogonid lineages (families), indicating external morphological traits previously used to deduce inter-familial affinities to be highly homoplastic. This erodes some of the support for phylogenetic information content in external morphology and calls for the study of additional data classes to test and underpin in-group relationships advocated in molecular analyses. In this regard, pycnogonid internal anatomy remains largely unexplored and taxon coverage in the studies available is limited. Based on micro-computed X-ray tomography and 3D reconstruction, we created a comprehensive atlas of in-situ representations of the central nervous system and midgut layout in all pycnogonid families. Beyond that, immunolabeling for tubulin and synapsin was used to reveal selected details of ganglionic architecture. The ventral nerve cord consistently features an array of separate ganglia, but some lineages exhibit extended composite ganglia, due to neuromere fusion. Further, inter-ganglionic distances and ganglion positions relative to segment borders vary, with an anterior shift in several families. Intersegmental nerves target longitudinal muscles and are lacking if the latter are reduced. Across families, the midgut displays linear leg diverticula. In Pycnogonidae, however, complex multi-branching diverticula occur, which may be evolutionarily correlated with a reduction of the heart. Several gross neuroanatomical features are linked to external morphology, including intersegmental nerve reduction in concert with trunk segment fusion, or antero-posterior ganglion shifts in partial correlation to trunk elongation/compaction. Mapping on a recent phylogenomic phylogeny shows disjunct distributions of these traits. Other characters show no such dependency and help to underpin closer affinities in sub-branches of the pycnogonid tree, as exemplified by the tripartite subesophageal ganglion of Pycnogonidae and Rhynchothoracidae. Building on this gross anatomical atlas, future studies should now aim to leverage the full potential of neuroanatomy for phylogenetic interrogation by deciphering pycnogonid nervous system architecture in more detail, given that pioneering work on neuron subsets revealed complex character sets with unequivocal homologies across some families.\",\"PeriodicalId\":55142,\"journal\":{\"name\":\"Frontiers in Zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12983-022-00459-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-022-00459-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
A microCT-based atlas of the central nervous system and midgut in sea spiders (Pycnogonida) sheds first light on evolutionary trends at the family level
Pycnogonida (sea spiders) is the sister group of all other extant chelicerates (spiders, scorpions and relatives) and thus represents an important taxon to inform early chelicerate evolution. Notably, phylogenetic analyses have challenged traditional hypotheses on the relationships of the major pycnogonid lineages (families), indicating external morphological traits previously used to deduce inter-familial affinities to be highly homoplastic. This erodes some of the support for phylogenetic information content in external morphology and calls for the study of additional data classes to test and underpin in-group relationships advocated in molecular analyses. In this regard, pycnogonid internal anatomy remains largely unexplored and taxon coverage in the studies available is limited. Based on micro-computed X-ray tomography and 3D reconstruction, we created a comprehensive atlas of in-situ representations of the central nervous system and midgut layout in all pycnogonid families. Beyond that, immunolabeling for tubulin and synapsin was used to reveal selected details of ganglionic architecture. The ventral nerve cord consistently features an array of separate ganglia, but some lineages exhibit extended composite ganglia, due to neuromere fusion. Further, inter-ganglionic distances and ganglion positions relative to segment borders vary, with an anterior shift in several families. Intersegmental nerves target longitudinal muscles and are lacking if the latter are reduced. Across families, the midgut displays linear leg diverticula. In Pycnogonidae, however, complex multi-branching diverticula occur, which may be evolutionarily correlated with a reduction of the heart. Several gross neuroanatomical features are linked to external morphology, including intersegmental nerve reduction in concert with trunk segment fusion, or antero-posterior ganglion shifts in partial correlation to trunk elongation/compaction. Mapping on a recent phylogenomic phylogeny shows disjunct distributions of these traits. Other characters show no such dependency and help to underpin closer affinities in sub-branches of the pycnogonid tree, as exemplified by the tripartite subesophageal ganglion of Pycnogonidae and Rhynchothoracidae. Building on this gross anatomical atlas, future studies should now aim to leverage the full potential of neuroanatomy for phylogenetic interrogation by deciphering pycnogonid nervous system architecture in more detail, given that pioneering work on neuron subsets revealed complex character sets with unequivocal homologies across some families.
期刊介绍:
Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.
Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.
The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.