{"title":"基于语义感知匹配的多回合响应选择","authors":"Rongjunchen Zhang, Tingmin Wu, Sheng Wen, Surya Nepal, Cecile Paris, Yang Xiang","doi":"https://dl.acm.org/doi/10.1145/3545570","DOIUrl":null,"url":null,"abstract":"<p>Multi-turn response selection is a key issue in retrieval-based chatbots and has attracted considerable attention in the NLP (Natural Language processing) field. So far, researchers have developed many solutions that can select appropriate responses for multi-turn conversations. However, these works are still suffering from the semantic mismatch problem when responses and context share similar words with different meanings. In this article, we propose a novel chatbot model based on Semantic Awareness Matching, called SAM. SAM can capture both similarity and semantic features in the context by a two-layer matching network. Appropriate responses are selected according to the matching probability made through the aggregation of the two feature types. In the evaluation, we pick 4 widely used datasets and compare SAM’s performance to that of 12 other models. Experiment results show that SAM achieves substantial improvements, with up to 1.5% <i>R</i><sub>10</sub>@1 on Ubuntu Dialogue Corpus V2, 0.5% <i>R</i><sub>10</sub>@1 on Douban Conversation Corpus, and 1.3% <i>R</i><sub>10</sub>@1 on E-commerce Corpus.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"1206 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAM: Multi-turn Response Selection Based on Semantic Awareness Matching\",\"authors\":\"Rongjunchen Zhang, Tingmin Wu, Sheng Wen, Surya Nepal, Cecile Paris, Yang Xiang\",\"doi\":\"https://dl.acm.org/doi/10.1145/3545570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-turn response selection is a key issue in retrieval-based chatbots and has attracted considerable attention in the NLP (Natural Language processing) field. So far, researchers have developed many solutions that can select appropriate responses for multi-turn conversations. However, these works are still suffering from the semantic mismatch problem when responses and context share similar words with different meanings. In this article, we propose a novel chatbot model based on Semantic Awareness Matching, called SAM. SAM can capture both similarity and semantic features in the context by a two-layer matching network. Appropriate responses are selected according to the matching probability made through the aggregation of the two feature types. In the evaluation, we pick 4 widely used datasets and compare SAM’s performance to that of 12 other models. Experiment results show that SAM achieves substantial improvements, with up to 1.5% <i>R</i><sub>10</sub>@1 on Ubuntu Dialogue Corpus V2, 0.5% <i>R</i><sub>10</sub>@1 on Douban Conversation Corpus, and 1.3% <i>R</i><sub>10</sub>@1 on E-commerce Corpus.</p>\",\"PeriodicalId\":50911,\"journal\":{\"name\":\"ACM Transactions on Internet Technology\",\"volume\":\"1206 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3545570\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3545570","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
SAM: Multi-turn Response Selection Based on Semantic Awareness Matching
Multi-turn response selection is a key issue in retrieval-based chatbots and has attracted considerable attention in the NLP (Natural Language processing) field. So far, researchers have developed many solutions that can select appropriate responses for multi-turn conversations. However, these works are still suffering from the semantic mismatch problem when responses and context share similar words with different meanings. In this article, we propose a novel chatbot model based on Semantic Awareness Matching, called SAM. SAM can capture both similarity and semantic features in the context by a two-layer matching network. Appropriate responses are selected according to the matching probability made through the aggregation of the two feature types. In the evaluation, we pick 4 widely used datasets and compare SAM’s performance to that of 12 other models. Experiment results show that SAM achieves substantial improvements, with up to 1.5% R10@1 on Ubuntu Dialogue Corpus V2, 0.5% R10@1 on Douban Conversation Corpus, and 1.3% R10@1 on E-commerce Corpus.
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.