Wenzhao Zhang, Yuxuan Zhang, Hongchang Fan, Yi Gao, Wei Dong
{"title":"云原生边缘系统的低代码开发框架","authors":"Wenzhao Zhang, Yuxuan Zhang, Hongchang Fan, Yi Gao, Wei Dong","doi":"https://dl.acm.org/doi/10.1145/3563215","DOIUrl":null,"url":null,"abstract":"<p>Customizing and deploying an edge system are time-consuming and complex tasks because of hardware heterogeneity, third-party software compatibility, diverse performance requirements, and so on. In this article, we present TinyEdge, a holistic framework for the low-code development of edge systems. The key idea of TinyEdge is to use a top-down approach for designing edge systems. Developers select and configure TinyEdge modules to specify their interaction logic without dealing with the specific hardware or software. Taking the configuration as input, TinyEdge automatically generates the deployment package and estimates the performance with sufficient profiling. TinyEdge provides a unified development toolkit to specify module dependencies, functionalities, interactions, and configurations. We implement TinyEdge and evaluate its performance using real-world edge systems. Results show that: (1) TinyEdge achieves rapid customization of edge systems, reducing 44.15% of development time and 67.79% of lines of code on average compared with the state-of-the-art edge computing platforms; (2) TinyEdge builds compact modules and optimizes the latent circular dependency detection and message routing efficiency; (3) TinyEdge performance estimation has low absolute errors in various settings.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-code Development Framework for Cloud-native Edge Systems\",\"authors\":\"Wenzhao Zhang, Yuxuan Zhang, Hongchang Fan, Yi Gao, Wei Dong\",\"doi\":\"https://dl.acm.org/doi/10.1145/3563215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Customizing and deploying an edge system are time-consuming and complex tasks because of hardware heterogeneity, third-party software compatibility, diverse performance requirements, and so on. In this article, we present TinyEdge, a holistic framework for the low-code development of edge systems. The key idea of TinyEdge is to use a top-down approach for designing edge systems. Developers select and configure TinyEdge modules to specify their interaction logic without dealing with the specific hardware or software. Taking the configuration as input, TinyEdge automatically generates the deployment package and estimates the performance with sufficient profiling. TinyEdge provides a unified development toolkit to specify module dependencies, functionalities, interactions, and configurations. We implement TinyEdge and evaluate its performance using real-world edge systems. Results show that: (1) TinyEdge achieves rapid customization of edge systems, reducing 44.15% of development time and 67.79% of lines of code on average compared with the state-of-the-art edge computing platforms; (2) TinyEdge builds compact modules and optimizes the latent circular dependency detection and message routing efficiency; (3) TinyEdge performance estimation has low absolute errors in various settings.</p>\",\"PeriodicalId\":50911,\"journal\":{\"name\":\"ACM Transactions on Internet Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3563215\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3563215","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Low-code Development Framework for Cloud-native Edge Systems
Customizing and deploying an edge system are time-consuming and complex tasks because of hardware heterogeneity, third-party software compatibility, diverse performance requirements, and so on. In this article, we present TinyEdge, a holistic framework for the low-code development of edge systems. The key idea of TinyEdge is to use a top-down approach for designing edge systems. Developers select and configure TinyEdge modules to specify their interaction logic without dealing with the specific hardware or software. Taking the configuration as input, TinyEdge automatically generates the deployment package and estimates the performance with sufficient profiling. TinyEdge provides a unified development toolkit to specify module dependencies, functionalities, interactions, and configurations. We implement TinyEdge and evaluate its performance using real-world edge systems. Results show that: (1) TinyEdge achieves rapid customization of edge systems, reducing 44.15% of development time and 67.79% of lines of code on average compared with the state-of-the-art edge computing platforms; (2) TinyEdge builds compact modules and optimizes the latent circular dependency detection and message routing efficiency; (3) TinyEdge performance estimation has low absolute errors in various settings.
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.