地震过程地貌学研究进展

IF 11.3 1区 地球科学 Q1 ASTRONOMY & ASTROPHYSICS Annual Review of Earth and Planetary Sciences Pub Date : 2022-01-06 DOI:10.1146/annurev-earth-032320-085133
Kristen L. Cook, Michael Dietze
{"title":"地震过程地貌学研究进展","authors":"Kristen L. Cook, Michael Dietze","doi":"10.1146/annurev-earth-032320-085133","DOIUrl":null,"url":null,"abstract":"One of the pillars of geomorphology is the study of geomorphic processes and their drivers, dynamics, and impacts. Like all activity that transfers energy to Earth's surface, a wide range of geomorphic process types create seismic waves that can be measured with standard seismic instruments. Seismic signals provide continuous high-resolution coverage with a spatial footprint that can vary from local to global, and in recent years, efforts to exploit these signals for information about surface processes have increased dramatically, coalescing into the emerging field of environmental seismology. The application of seismic methods has the potential to drive advances in our understanding of the occurrence, timing, and triggering of geomorphic events, the dynamics of geomorphic processes, fluvial bedload transport, and integrative geomorphic system monitoring. As new seismic applications move from development to proof of concept to routine application, integration between geomorphologists and seismologists is key for continued progress. ▪ Geomorphic activity on Earth's surface produces seismic signals that can be measured with standard seismic instruments. ▪ Seismic methods are driving advances in our understanding of the occurrence, triggering, and internal dynamics of a range of geomorphic processes. ▪ Dedicated seismic-based observatories offer the potential to comprehensively characterize geomorphic activity and its impacts across a landscape. ▪ Collaboration between seismologists and geomorphologists is fostering the development of new applications, models, and analysis techniques for geomorphic seismology.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Advances in Process Geomorphology\",\"authors\":\"Kristen L. Cook, Michael Dietze\",\"doi\":\"10.1146/annurev-earth-032320-085133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the pillars of geomorphology is the study of geomorphic processes and their drivers, dynamics, and impacts. Like all activity that transfers energy to Earth's surface, a wide range of geomorphic process types create seismic waves that can be measured with standard seismic instruments. Seismic signals provide continuous high-resolution coverage with a spatial footprint that can vary from local to global, and in recent years, efforts to exploit these signals for information about surface processes have increased dramatically, coalescing into the emerging field of environmental seismology. The application of seismic methods has the potential to drive advances in our understanding of the occurrence, timing, and triggering of geomorphic events, the dynamics of geomorphic processes, fluvial bedload transport, and integrative geomorphic system monitoring. As new seismic applications move from development to proof of concept to routine application, integration between geomorphologists and seismologists is key for continued progress. ▪ Geomorphic activity on Earth's surface produces seismic signals that can be measured with standard seismic instruments. ▪ Seismic methods are driving advances in our understanding of the occurrence, triggering, and internal dynamics of a range of geomorphic processes. ▪ Dedicated seismic-based observatories offer the potential to comprehensively characterize geomorphic activity and its impacts across a landscape. ▪ Collaboration between seismologists and geomorphologists is fostering the development of new applications, models, and analysis techniques for geomorphic seismology.\",\"PeriodicalId\":8034,\"journal\":{\"name\":\"Annual Review of Earth and Planetary Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Earth and Planetary Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-earth-032320-085133\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-032320-085133","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

地貌学的支柱之一是研究地貌过程及其驱动因素、动力学和影响。像所有将能量转移到地球表面的活动一样,各种各样的地貌过程类型会产生地震波,这些地震波可以用标准的地震仪器来测量。地震信号提供了连续的高分辨率覆盖范围,其空间足迹可以从局部到全球变化,近年来,利用这些信号获取地表过程信息的努力急剧增加,合并为环境地震学这一新兴领域。地震方法的应用有可能推动我们对地貌事件的发生、时间和触发、地貌过程的动力学、河流河床搬运和综合地貌系统监测的理解。随着新的地震应用从开发到概念验证再到常规应用,地貌学家和地震学家之间的整合是持续进步的关键。地球表面的地貌活动产生的地震信号可以用标准的地震仪器测量。地震方法正在推动我们对一系列地貌过程的发生、触发和内部动力学的理解。▪专门的地震观测站提供了全面描述地貌活动及其对整个景观影响的潜力。地震学家和地貌学家之间的合作正在促进地貌学的新应用、模型和分析技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic Advances in Process Geomorphology
One of the pillars of geomorphology is the study of geomorphic processes and their drivers, dynamics, and impacts. Like all activity that transfers energy to Earth's surface, a wide range of geomorphic process types create seismic waves that can be measured with standard seismic instruments. Seismic signals provide continuous high-resolution coverage with a spatial footprint that can vary from local to global, and in recent years, efforts to exploit these signals for information about surface processes have increased dramatically, coalescing into the emerging field of environmental seismology. The application of seismic methods has the potential to drive advances in our understanding of the occurrence, timing, and triggering of geomorphic events, the dynamics of geomorphic processes, fluvial bedload transport, and integrative geomorphic system monitoring. As new seismic applications move from development to proof of concept to routine application, integration between geomorphologists and seismologists is key for continued progress. ▪ Geomorphic activity on Earth's surface produces seismic signals that can be measured with standard seismic instruments. ▪ Seismic methods are driving advances in our understanding of the occurrence, triggering, and internal dynamics of a range of geomorphic processes. ▪ Dedicated seismic-based observatories offer the potential to comprehensively characterize geomorphic activity and its impacts across a landscape. ▪ Collaboration between seismologists and geomorphologists is fostering the development of new applications, models, and analysis techniques for geomorphic seismology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Earth and Planetary Sciences
Annual Review of Earth and Planetary Sciences 地学天文-地球科学综合
CiteScore
25.10
自引率
0.00%
发文量
25
期刊介绍: Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.
期刊最新文献
Autobiography: A 50-Year Quest for Understanding in Geoscience Toward a Natural History of Microbial Life The Composition of Earth's Lower Mantle Grain Size in Landscapes The Geologic History of Plants and Climate in India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1