准分数驱动模型的波动率预测及其在冠状病毒大流行期的应用

Astrid Ayala, Szabolcs Blazsek, Adrian Licht
{"title":"准分数驱动模型的波动率预测及其在冠状病毒大流行期的应用","authors":"Astrid Ayala, Szabolcs Blazsek, Adrian Licht","doi":"10.1515/snde-2022-0085","DOIUrl":null,"url":null,"abstract":"We study the statistical and volatility forecasting performances of the recent quasi-score-driven EGARCH (exponential generalized autoregressive conditional heteroscedasticity) models. We compare the quasi-score-driven EGARCH models with GARCH, asymmetric power ARCH (A-PARCH), and all relevant score-driven EGARCH models of the literature. For score-driven and quasi-score-driven EGARCH, we use the following seven score-driven probability distributions: Student’s <jats:italic>t</jats:italic>-distribution; general error distribution (GED); generalized <jats:italic>t</jats:italic>-distribution (Gen-<jats:italic>t</jats:italic>); skewed generalized <jats:italic>t</jats:italic>-distribution (Skew-Gen-<jats:italic>t</jats:italic>); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian distribution (NIG); Meixner distribution (MXN). We use all combinations of those distributions for (i) the probability distribution of the dependent variable, and (ii) the probability distribution which defines the quasi-score function updating term of the quasi-score-driven filters. We use daily data for the Standard &amp; Poor’s 500 (S&amp;P 500) index. We find that both in-sample and out-of-sample, quasi-score-driven EGARCH is superior to GARCH, A-PARCH, and score-driven EGARCH. We report in-sample results for the period of January 2000 to December 2020, providing evidence in favor of the quasi-score-driven EGARCH model for the last two decades. We report out-of-sample volatility forecasting results for a period within the coronavirus disease 2019 (COVID-19) pandemic, providing evidence in favor of the quasi-score-driven EGARCH model for a crisis period.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"35 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volatility Forecasting Using Quasi-Score-Driven Models with an Application to the Coronavirus Pandemic Period\",\"authors\":\"Astrid Ayala, Szabolcs Blazsek, Adrian Licht\",\"doi\":\"10.1515/snde-2022-0085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the statistical and volatility forecasting performances of the recent quasi-score-driven EGARCH (exponential generalized autoregressive conditional heteroscedasticity) models. We compare the quasi-score-driven EGARCH models with GARCH, asymmetric power ARCH (A-PARCH), and all relevant score-driven EGARCH models of the literature. For score-driven and quasi-score-driven EGARCH, we use the following seven score-driven probability distributions: Student’s <jats:italic>t</jats:italic>-distribution; general error distribution (GED); generalized <jats:italic>t</jats:italic>-distribution (Gen-<jats:italic>t</jats:italic>); skewed generalized <jats:italic>t</jats:italic>-distribution (Skew-Gen-<jats:italic>t</jats:italic>); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian distribution (NIG); Meixner distribution (MXN). We use all combinations of those distributions for (i) the probability distribution of the dependent variable, and (ii) the probability distribution which defines the quasi-score function updating term of the quasi-score-driven filters. We use daily data for the Standard &amp; Poor’s 500 (S&amp;P 500) index. We find that both in-sample and out-of-sample, quasi-score-driven EGARCH is superior to GARCH, A-PARCH, and score-driven EGARCH. We report in-sample results for the period of January 2000 to December 2020, providing evidence in favor of the quasi-score-driven EGARCH model for the last two decades. We report out-of-sample volatility forecasting results for a period within the coronavirus disease 2019 (COVID-19) pandemic, providing evidence in favor of the quasi-score-driven EGARCH model for a crisis period.\",\"PeriodicalId\":501448,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics & Econometrics\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics & Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2022-0085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2022-0085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了最近的准分数驱动的EGARCH(指数广义自回归条件异方差)模型的统计和波动性预测性能。我们将准分数驱动的EGARCH模型与GARCH、不对称权力ARCH (A-PARCH)和所有相关的分数驱动的EGARCH模型进行了比较。对于分数驱动和准分数驱动的EGARCH,我们使用以下7个分数驱动的概率分布:学生t分布;一般误差分布(GED);广义t分布(Gen-t);偏态广义t分布;第二类指数广义beta分布(EGB2);正态-逆高斯分布;梅克纳分布(MXN)。我们将这些分布的所有组合用于(i)因变量的概率分布,以及(ii)定义准分数驱动滤波器的准分数函数更新项的概率分布。我们使用每日数据作为标准。标准普尔500指数。我们发现样本内和样本外、准分数驱动的EGARCH都优于GARCH、A-PARCH和分数驱动的EGARCH。我们报告了2000年1月至2020年12月期间的样本内结果,为过去20年的准分数驱动EGARCH模型提供了支持的证据。我们报告了2019冠状病毒病(COVID-19)大流行期间的样本外波动率预测结果,为危机时期的准分数驱动EGARCH模型提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Volatility Forecasting Using Quasi-Score-Driven Models with an Application to the Coronavirus Pandemic Period
We study the statistical and volatility forecasting performances of the recent quasi-score-driven EGARCH (exponential generalized autoregressive conditional heteroscedasticity) models. We compare the quasi-score-driven EGARCH models with GARCH, asymmetric power ARCH (A-PARCH), and all relevant score-driven EGARCH models of the literature. For score-driven and quasi-score-driven EGARCH, we use the following seven score-driven probability distributions: Student’s t-distribution; general error distribution (GED); generalized t-distribution (Gen-t); skewed generalized t-distribution (Skew-Gen-t); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian distribution (NIG); Meixner distribution (MXN). We use all combinations of those distributions for (i) the probability distribution of the dependent variable, and (ii) the probability distribution which defines the quasi-score function updating term of the quasi-score-driven filters. We use daily data for the Standard & Poor’s 500 (S&P 500) index. We find that both in-sample and out-of-sample, quasi-score-driven EGARCH is superior to GARCH, A-PARCH, and score-driven EGARCH. We report in-sample results for the period of January 2000 to December 2020, providing evidence in favor of the quasi-score-driven EGARCH model for the last two decades. We report out-of-sample volatility forecasting results for a period within the coronavirus disease 2019 (COVID-19) pandemic, providing evidence in favor of the quasi-score-driven EGARCH model for a crisis period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asymptotic Properties of ReLU FFN Sieve Estimators Multivariate Stochastic Volatility with Co-Heteroscedasticity Heterogeneity, Jumps and Co-Movements in Transmission of Volatility Spillovers Among Cryptocurrencies Heterogeneous Volatility Information Content for the Realized GARCH Modeling and Forecasting Volatility Determination of the Number of Breaks in Heterogeneous Panel Data Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1