{"title":"准分数驱动模型的波动率预测及其在冠状病毒大流行期的应用","authors":"Astrid Ayala, Szabolcs Blazsek, Adrian Licht","doi":"10.1515/snde-2022-0085","DOIUrl":null,"url":null,"abstract":"We study the statistical and volatility forecasting performances of the recent quasi-score-driven EGARCH (exponential generalized autoregressive conditional heteroscedasticity) models. We compare the quasi-score-driven EGARCH models with GARCH, asymmetric power ARCH (A-PARCH), and all relevant score-driven EGARCH models of the literature. For score-driven and quasi-score-driven EGARCH, we use the following seven score-driven probability distributions: Student’s <jats:italic>t</jats:italic>-distribution; general error distribution (GED); generalized <jats:italic>t</jats:italic>-distribution (Gen-<jats:italic>t</jats:italic>); skewed generalized <jats:italic>t</jats:italic>-distribution (Skew-Gen-<jats:italic>t</jats:italic>); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian distribution (NIG); Meixner distribution (MXN). We use all combinations of those distributions for (i) the probability distribution of the dependent variable, and (ii) the probability distribution which defines the quasi-score function updating term of the quasi-score-driven filters. We use daily data for the Standard & Poor’s 500 (S&P 500) index. We find that both in-sample and out-of-sample, quasi-score-driven EGARCH is superior to GARCH, A-PARCH, and score-driven EGARCH. We report in-sample results for the period of January 2000 to December 2020, providing evidence in favor of the quasi-score-driven EGARCH model for the last two decades. We report out-of-sample volatility forecasting results for a period within the coronavirus disease 2019 (COVID-19) pandemic, providing evidence in favor of the quasi-score-driven EGARCH model for a crisis period.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"35 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volatility Forecasting Using Quasi-Score-Driven Models with an Application to the Coronavirus Pandemic Period\",\"authors\":\"Astrid Ayala, Szabolcs Blazsek, Adrian Licht\",\"doi\":\"10.1515/snde-2022-0085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the statistical and volatility forecasting performances of the recent quasi-score-driven EGARCH (exponential generalized autoregressive conditional heteroscedasticity) models. We compare the quasi-score-driven EGARCH models with GARCH, asymmetric power ARCH (A-PARCH), and all relevant score-driven EGARCH models of the literature. For score-driven and quasi-score-driven EGARCH, we use the following seven score-driven probability distributions: Student’s <jats:italic>t</jats:italic>-distribution; general error distribution (GED); generalized <jats:italic>t</jats:italic>-distribution (Gen-<jats:italic>t</jats:italic>); skewed generalized <jats:italic>t</jats:italic>-distribution (Skew-Gen-<jats:italic>t</jats:italic>); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian distribution (NIG); Meixner distribution (MXN). We use all combinations of those distributions for (i) the probability distribution of the dependent variable, and (ii) the probability distribution which defines the quasi-score function updating term of the quasi-score-driven filters. We use daily data for the Standard & Poor’s 500 (S&P 500) index. We find that both in-sample and out-of-sample, quasi-score-driven EGARCH is superior to GARCH, A-PARCH, and score-driven EGARCH. We report in-sample results for the period of January 2000 to December 2020, providing evidence in favor of the quasi-score-driven EGARCH model for the last two decades. We report out-of-sample volatility forecasting results for a period within the coronavirus disease 2019 (COVID-19) pandemic, providing evidence in favor of the quasi-score-driven EGARCH model for a crisis period.\",\"PeriodicalId\":501448,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics & Econometrics\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics & Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2022-0085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2022-0085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Volatility Forecasting Using Quasi-Score-Driven Models with an Application to the Coronavirus Pandemic Period
We study the statistical and volatility forecasting performances of the recent quasi-score-driven EGARCH (exponential generalized autoregressive conditional heteroscedasticity) models. We compare the quasi-score-driven EGARCH models with GARCH, asymmetric power ARCH (A-PARCH), and all relevant score-driven EGARCH models of the literature. For score-driven and quasi-score-driven EGARCH, we use the following seven score-driven probability distributions: Student’s t-distribution; general error distribution (GED); generalized t-distribution (Gen-t); skewed generalized t-distribution (Skew-Gen-t); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian distribution (NIG); Meixner distribution (MXN). We use all combinations of those distributions for (i) the probability distribution of the dependent variable, and (ii) the probability distribution which defines the quasi-score function updating term of the quasi-score-driven filters. We use daily data for the Standard & Poor’s 500 (S&P 500) index. We find that both in-sample and out-of-sample, quasi-score-driven EGARCH is superior to GARCH, A-PARCH, and score-driven EGARCH. We report in-sample results for the period of January 2000 to December 2020, providing evidence in favor of the quasi-score-driven EGARCH model for the last two decades. We report out-of-sample volatility forecasting results for a period within the coronavirus disease 2019 (COVID-19) pandemic, providing evidence in favor of the quasi-score-driven EGARCH model for a crisis period.