{"title":"如何理解和报告荟萃分析中的异质性:i平方和预测区间之间的差异","authors":"Michael Borenstein","doi":"10.1016/j.imr.2023.101014","DOIUrl":null,"url":null,"abstract":"<div><p>In any meta-analysis it is important to report not only the mean effect size but also how the effect size varies across studies. A treatment that has a moderate clinical impact in all studies is very different than a treatment where the impact is moderate on average, but in some studies is large and in others is trivial (or even harmful). A treatment that has no impact in any studies is very different than a treatment that has no impact on average because it is helpful in some studies but harmful in others. The majority of meta-analyses use the I-squared index to quantify heterogeneity. While this practice is common it is nevertheless incorrect. I-squared does not tell us how much the effect size varies (except when I-squared is zero percent). The statistic that does convey this information is the prediction interval. It allows us to report, for example, that a treatment has a clinically trivial or moderate effect in roughly 10 % of studies, a large effect in roughly 50 %, and a very large effect in roughly 40 %. This is the information that researchers or clinicians have in mind when they ask about heterogeneity. It is the information that researchers believe (incorrectly) is provided by I-squared.</p></div>","PeriodicalId":13644,"journal":{"name":"Integrative Medicine Research","volume":"12 4","pages":"Article 101014"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213422023000938/pdfft?md5=e4a81bd65e0c133ffa3fa698f4f8c8a9&pid=1-s2.0-S2213422023000938-main.pdf","citationCount":"0","resultStr":"{\"title\":\"How to understand and report heterogeneity in a meta-analysis: The difference between I-squared and prediction intervals\",\"authors\":\"Michael Borenstein\",\"doi\":\"10.1016/j.imr.2023.101014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In any meta-analysis it is important to report not only the mean effect size but also how the effect size varies across studies. A treatment that has a moderate clinical impact in all studies is very different than a treatment where the impact is moderate on average, but in some studies is large and in others is trivial (or even harmful). A treatment that has no impact in any studies is very different than a treatment that has no impact on average because it is helpful in some studies but harmful in others. The majority of meta-analyses use the I-squared index to quantify heterogeneity. While this practice is common it is nevertheless incorrect. I-squared does not tell us how much the effect size varies (except when I-squared is zero percent). The statistic that does convey this information is the prediction interval. It allows us to report, for example, that a treatment has a clinically trivial or moderate effect in roughly 10 % of studies, a large effect in roughly 50 %, and a very large effect in roughly 40 %. This is the information that researchers or clinicians have in mind when they ask about heterogeneity. It is the information that researchers believe (incorrectly) is provided by I-squared.</p></div>\",\"PeriodicalId\":13644,\"journal\":{\"name\":\"Integrative Medicine Research\",\"volume\":\"12 4\",\"pages\":\"Article 101014\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213422023000938/pdfft?md5=e4a81bd65e0c133ffa3fa698f4f8c8a9&pid=1-s2.0-S2213422023000938-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Medicine Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213422023000938\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Medicine Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213422023000938","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
How to understand and report heterogeneity in a meta-analysis: The difference between I-squared and prediction intervals
In any meta-analysis it is important to report not only the mean effect size but also how the effect size varies across studies. A treatment that has a moderate clinical impact in all studies is very different than a treatment where the impact is moderate on average, but in some studies is large and in others is trivial (or even harmful). A treatment that has no impact in any studies is very different than a treatment that has no impact on average because it is helpful in some studies but harmful in others. The majority of meta-analyses use the I-squared index to quantify heterogeneity. While this practice is common it is nevertheless incorrect. I-squared does not tell us how much the effect size varies (except when I-squared is zero percent). The statistic that does convey this information is the prediction interval. It allows us to report, for example, that a treatment has a clinically trivial or moderate effect in roughly 10 % of studies, a large effect in roughly 50 %, and a very large effect in roughly 40 %. This is the information that researchers or clinicians have in mind when they ask about heterogeneity. It is the information that researchers believe (incorrectly) is provided by I-squared.
期刊介绍:
Integrative Medicine Research (IMR) is a quarterly, peer-reviewed journal focused on scientific research for integrative medicine including traditional medicine (emphasis on acupuncture and herbal medicine), complementary and alternative medicine, and systems medicine. The journal includes papers on basic research, clinical research, methodology, theory, computational analysis and modelling, topical reviews, medical history, education and policy based on physiology, pathology, diagnosis and the systems approach in the field of integrative medicine.