Ramsia Geisler , Mohammad A. Hormozi , Regine von Klitzing
{"title":"揭开纳米尺度的世界:用原子力纳米压头探索表面张力测量","authors":"Ramsia Geisler , Mohammad A. Hormozi , Regine von Klitzing","doi":"10.1016/j.cocis.2023.101769","DOIUrl":null,"url":null,"abstract":"<div><p>This review summarises state-of-the-art AFM<span> experiments measuring surface tension in various liquid systems with cylinder shaped AFM probes (nanoindenters). AFM has emerged as a powerful technique, offering precise force measurements and advantages such as reduced sample contamination, analysis of small sample amounts, and access to nanoscale features such as the measurement of the single particle surface tension. These contribute to advancing our understanding of liquid systems and interfacial phenomena. However, the limited number of published studies may be attributed to challenges in AFM-based measurements using the micro-Wilhelmy method or the complexity of the perceived importance of surface tension research. Further investigation is needed to elucidate these factors. In recent years, the possibilities for producing nanoindenters have become increasingly precise which gives a new momentum to the AFM technique to measure surface tensions on a micro and nanoscale.</span></p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"69 ","pages":"Article 101769"},"PeriodicalIF":7.9000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the nanoscale world: Exploring surface tension measurements with atomic force nanoindenters\",\"authors\":\"Ramsia Geisler , Mohammad A. Hormozi , Regine von Klitzing\",\"doi\":\"10.1016/j.cocis.2023.101769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review summarises state-of-the-art AFM<span> experiments measuring surface tension in various liquid systems with cylinder shaped AFM probes (nanoindenters). AFM has emerged as a powerful technique, offering precise force measurements and advantages such as reduced sample contamination, analysis of small sample amounts, and access to nanoscale features such as the measurement of the single particle surface tension. These contribute to advancing our understanding of liquid systems and interfacial phenomena. However, the limited number of published studies may be attributed to challenges in AFM-based measurements using the micro-Wilhelmy method or the complexity of the perceived importance of surface tension research. Further investigation is needed to elucidate these factors. In recent years, the possibilities for producing nanoindenters have become increasingly precise which gives a new momentum to the AFM technique to measure surface tensions on a micro and nanoscale.</span></p></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":\"69 \",\"pages\":\"Article 101769\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029423000948\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423000948","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Unveiling the nanoscale world: Exploring surface tension measurements with atomic force nanoindenters
This review summarises state-of-the-art AFM experiments measuring surface tension in various liquid systems with cylinder shaped AFM probes (nanoindenters). AFM has emerged as a powerful technique, offering precise force measurements and advantages such as reduced sample contamination, analysis of small sample amounts, and access to nanoscale features such as the measurement of the single particle surface tension. These contribute to advancing our understanding of liquid systems and interfacial phenomena. However, the limited number of published studies may be attributed to challenges in AFM-based measurements using the micro-Wilhelmy method or the complexity of the perceived importance of surface tension research. Further investigation is needed to elucidate these factors. In recent years, the possibilities for producing nanoindenters have become increasingly precise which gives a new momentum to the AFM technique to measure surface tensions on a micro and nanoscale.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.