{"title":"DIPPAS:一种深度图像先验PRNU匿名化方案","authors":"Picetti, Francesco, Mandelli, Sara, Bestagini, Paolo, Lipari, Vincenzo, Tubaro, Stefano","doi":"10.1186/s13635-022-00128-7","DOIUrl":null,"url":null,"abstract":"Source device identification is an important topic in image forensics since it allows to trace back the origin of an image. Its forensics counterpart is source device anonymization, that is, to mask any trace on the image that can be useful for identifying the source device. A typical trace exploited for source device identification is the photo response non-uniformity (PRNU), a noise pattern left by the device on the acquired images. In this paper, we devise a methodology for suppressing such a trace from natural images without a significant impact on image quality. Expressly, we turn PRNU anonymization into the combination of a global optimization problem in a deep image prior (DIP) framework followed by local post-processing operations. In a nutshell, a convolutional neural network (CNN) acts as a generator and iteratively returns several images with attenuated PRNU traces. By exploiting straightforward local post-processing and assembly on these images, we produce a final image that is anonymized with respect to the source PRNU, still maintaining high visual quality. With respect to widely adopted deep learning paradigms, the used CNN is not trained on a set of input-target pairs of images. Instead, it is optimized to reconstruct output images from the original image under analysis itself. This makes the approach particularly suitable in scenarios where large heterogeneous databases are analyzed. Moreover, it prevents any problem due to the lack of generalization. Through numerical examples on publicly available datasets, we prove our methodology to be effective compared to state-of-the-art techniques.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"20 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"DIPPAS: a deep image prior PRNU anonymization scheme\",\"authors\":\"Picetti, Francesco, Mandelli, Sara, Bestagini, Paolo, Lipari, Vincenzo, Tubaro, Stefano\",\"doi\":\"10.1186/s13635-022-00128-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Source device identification is an important topic in image forensics since it allows to trace back the origin of an image. Its forensics counterpart is source device anonymization, that is, to mask any trace on the image that can be useful for identifying the source device. A typical trace exploited for source device identification is the photo response non-uniformity (PRNU), a noise pattern left by the device on the acquired images. In this paper, we devise a methodology for suppressing such a trace from natural images without a significant impact on image quality. Expressly, we turn PRNU anonymization into the combination of a global optimization problem in a deep image prior (DIP) framework followed by local post-processing operations. In a nutshell, a convolutional neural network (CNN) acts as a generator and iteratively returns several images with attenuated PRNU traces. By exploiting straightforward local post-processing and assembly on these images, we produce a final image that is anonymized with respect to the source PRNU, still maintaining high visual quality. With respect to widely adopted deep learning paradigms, the used CNN is not trained on a set of input-target pairs of images. Instead, it is optimized to reconstruct output images from the original image under analysis itself. This makes the approach particularly suitable in scenarios where large heterogeneous databases are analyzed. Moreover, it prevents any problem due to the lack of generalization. Through numerical examples on publicly available datasets, we prove our methodology to be effective compared to state-of-the-art techniques.\",\"PeriodicalId\":46070,\"journal\":{\"name\":\"EURASIP Journal on Information Security\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13635-022-00128-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-022-00128-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DIPPAS: a deep image prior PRNU anonymization scheme
Source device identification is an important topic in image forensics since it allows to trace back the origin of an image. Its forensics counterpart is source device anonymization, that is, to mask any trace on the image that can be useful for identifying the source device. A typical trace exploited for source device identification is the photo response non-uniformity (PRNU), a noise pattern left by the device on the acquired images. In this paper, we devise a methodology for suppressing such a trace from natural images without a significant impact on image quality. Expressly, we turn PRNU anonymization into the combination of a global optimization problem in a deep image prior (DIP) framework followed by local post-processing operations. In a nutshell, a convolutional neural network (CNN) acts as a generator and iteratively returns several images with attenuated PRNU traces. By exploiting straightforward local post-processing and assembly on these images, we produce a final image that is anonymized with respect to the source PRNU, still maintaining high visual quality. With respect to widely adopted deep learning paradigms, the used CNN is not trained on a set of input-target pairs of images. Instead, it is optimized to reconstruct output images from the original image under analysis itself. This makes the approach particularly suitable in scenarios where large heterogeneous databases are analyzed. Moreover, it prevents any problem due to the lack of generalization. Through numerical examples on publicly available datasets, we prove our methodology to be effective compared to state-of-the-art techniques.
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy