在应用随机参数之前需要解决固定参数问题:基于模拟的研究

IF 12.5 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Analytic Methods in Accident Research Pub Date : 2023-11-28 DOI:10.1016/j.amar.2023.100314
Numan Ahmad , Tanmoy Bhowmik , Vikash V. Gayah , Naveen Eluru
{"title":"在应用随机参数之前需要解决固定参数问题:基于模拟的研究","authors":"Numan Ahmad ,&nbsp;Tanmoy Bhowmik ,&nbsp;Vikash V. Gayah ,&nbsp;Naveen Eluru","doi":"10.1016/j.amar.2023.100314","DOIUrl":null,"url":null,"abstract":"<div><p>Count regression models have been applied to model expected crash frequency at individual roadway locations. Random parameters have been increasingly integrated into these models to account for unobserved heterogeneity. However, the introduction of random parameters might also mask issues in the model specification, leading to inaccurate relationships and model interpretation. Two of these specification-related issues are: (1) not considering the appropriate functional form of explanatory variables; and, (2) ignoring the best set of significant explanatory variables. To better examine the need for careful model specification, this study uses synthetic data to demonstrate that the consideration of random parameters does not address the two model specification issues identified. The results from the simulation study illustrate that (a) model specification issues cannot be circumvented by random parameters alone and (b) random parameter models including the exhaustive set of explanatory variables available offer significant model improvements.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"41 ","pages":"Article 100314"},"PeriodicalIF":12.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213665723000490/pdfft?md5=758e1de36f599120beb557e28428c58c&pid=1-s2.0-S2213665723000490-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the need to address fixed-parameter issues before applying random parameters: A simulation-based study\",\"authors\":\"Numan Ahmad ,&nbsp;Tanmoy Bhowmik ,&nbsp;Vikash V. Gayah ,&nbsp;Naveen Eluru\",\"doi\":\"10.1016/j.amar.2023.100314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Count regression models have been applied to model expected crash frequency at individual roadway locations. Random parameters have been increasingly integrated into these models to account for unobserved heterogeneity. However, the introduction of random parameters might also mask issues in the model specification, leading to inaccurate relationships and model interpretation. Two of these specification-related issues are: (1) not considering the appropriate functional form of explanatory variables; and, (2) ignoring the best set of significant explanatory variables. To better examine the need for careful model specification, this study uses synthetic data to demonstrate that the consideration of random parameters does not address the two model specification issues identified. The results from the simulation study illustrate that (a) model specification issues cannot be circumvented by random parameters alone and (b) random parameter models including the exhaustive set of explanatory variables available offer significant model improvements.</p></div>\",\"PeriodicalId\":47520,\"journal\":{\"name\":\"Analytic Methods in Accident Research\",\"volume\":\"41 \",\"pages\":\"Article 100314\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213665723000490/pdfft?md5=758e1de36f599120beb557e28428c58c&pid=1-s2.0-S2213665723000490-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic Methods in Accident Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213665723000490\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665723000490","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

计数回归模型已被应用于模拟在个别道路位置的预期碰撞频率。随机参数越来越多地集成到这些模型中,以解释未观察到的异质性。然而,随机参数的引入也可能掩盖模型规范中的问题,导致不准确的关系和模型解释。其中两个与规范相关的问题是:1)没有考虑解释变量的适当函数形式;2)忽略最优的显著解释变量集。为了更好地检验仔细模型规范的必要性,本研究使用合成数据来证明随机参数的考虑并不能解决所确定的两个模型规范问题。模拟研究的结果表明:(a)模型规范问题不能仅仅通过随机参数来规避,(b)随机参数模型包括可用的穷举解释变量集,提供了显著的模型改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the need to address fixed-parameter issues before applying random parameters: A simulation-based study

Count regression models have been applied to model expected crash frequency at individual roadway locations. Random parameters have been increasingly integrated into these models to account for unobserved heterogeneity. However, the introduction of random parameters might also mask issues in the model specification, leading to inaccurate relationships and model interpretation. Two of these specification-related issues are: (1) not considering the appropriate functional form of explanatory variables; and, (2) ignoring the best set of significant explanatory variables. To better examine the need for careful model specification, this study uses synthetic data to demonstrate that the consideration of random parameters does not address the two model specification issues identified. The results from the simulation study illustrate that (a) model specification issues cannot be circumvented by random parameters alone and (b) random parameter models including the exhaustive set of explanatory variables available offer significant model improvements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.10
自引率
34.10%
发文量
35
审稿时长
24 days
期刊介绍: Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.
期刊最新文献
Determinants influencing alcohol-related two-vehicle crash severity: A multivariate Bayesian hierarchical random parameters correlated outcomes logit model Effects of sample size on pedestrian crash risk estimation from traffic conflicts using extreme value models Editorial Board A cross-comparison of different extreme value modeling techniques for traffic conflict-based crash risk estimation The role of posted speed limit on pedestrian and bicycle injury severities: An investigation into systematic and unobserved heterogeneities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1