Lin Liu, Xin Xu, Jing Wu, Lin Zhang, Jialiang Li, Xiaoyu Zeng
{"title":"没食子酸和聚亚胺在碳纤维表面共沉积以增强环氧复合材料的界面性能","authors":"Lin Liu, Xin Xu, Jing Wu, Lin Zhang, Jialiang Li, Xiaoyu Zeng","doi":"10.1134/S1560090423701270","DOIUrl":null,"url":null,"abstract":"<p>Inspired by mussel heuristic chemistry, a novel method for improving surface wettability and adhesion of carbon fibers with epoxy resins was proposed by codepositing gallic acid and polyethylene imine on the carbon fiber surfaces in a convenient operation. The results of scanning electron microscopy, infrared, Raman and X-ray photoelectron spectra revealed that gallic acid and polyethylene imine could undergo Michael addition or Schiff base reaction and codeposit on the carbon fiber surfaces successfully. The gallic acid-polyethylene imine codeposited carbon fibers were used to fabricate epoxy matrix composites. The results of mechanical tests showed that interlaminar shear strength, flexural modulus and strength of the gallic acid-polyethylene imine codeposited carbon fiber composite were increased by 27, 38, and 27% respectively, compared with those of the untreated carbon fiber composite. The conclusion can be drawn that the gallic acid-polyethylene imine codeposition is an effective method for improving interfacial properties of carbon fiber reinforced epoxy resin matrix composites.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":"65 5","pages":"639 - 647"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Codeposition of Gallic Acid and Polyethylene Imine on Carbon Fiber Surfaces to Enhance Interfacial Properties of Epoxy Composites\",\"authors\":\"Lin Liu, Xin Xu, Jing Wu, Lin Zhang, Jialiang Li, Xiaoyu Zeng\",\"doi\":\"10.1134/S1560090423701270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inspired by mussel heuristic chemistry, a novel method for improving surface wettability and adhesion of carbon fibers with epoxy resins was proposed by codepositing gallic acid and polyethylene imine on the carbon fiber surfaces in a convenient operation. The results of scanning electron microscopy, infrared, Raman and X-ray photoelectron spectra revealed that gallic acid and polyethylene imine could undergo Michael addition or Schiff base reaction and codeposit on the carbon fiber surfaces successfully. The gallic acid-polyethylene imine codeposited carbon fibers were used to fabricate epoxy matrix composites. The results of mechanical tests showed that interlaminar shear strength, flexural modulus and strength of the gallic acid-polyethylene imine codeposited carbon fiber composite were increased by 27, 38, and 27% respectively, compared with those of the untreated carbon fiber composite. The conclusion can be drawn that the gallic acid-polyethylene imine codeposition is an effective method for improving interfacial properties of carbon fiber reinforced epoxy resin matrix composites.</p>\",\"PeriodicalId\":739,\"journal\":{\"name\":\"Polymer Science, Series B\",\"volume\":\"65 5\",\"pages\":\"639 - 647\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560090423701270\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1560090423701270","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Codeposition of Gallic Acid and Polyethylene Imine on Carbon Fiber Surfaces to Enhance Interfacial Properties of Epoxy Composites
Inspired by mussel heuristic chemistry, a novel method for improving surface wettability and adhesion of carbon fibers with epoxy resins was proposed by codepositing gallic acid and polyethylene imine on the carbon fiber surfaces in a convenient operation. The results of scanning electron microscopy, infrared, Raman and X-ray photoelectron spectra revealed that gallic acid and polyethylene imine could undergo Michael addition or Schiff base reaction and codeposit on the carbon fiber surfaces successfully. The gallic acid-polyethylene imine codeposited carbon fibers were used to fabricate epoxy matrix composites. The results of mechanical tests showed that interlaminar shear strength, flexural modulus and strength of the gallic acid-polyethylene imine codeposited carbon fiber composite were increased by 27, 38, and 27% respectively, compared with those of the untreated carbon fiber composite. The conclusion can be drawn that the gallic acid-polyethylene imine codeposition is an effective method for improving interfacial properties of carbon fiber reinforced epoxy resin matrix composites.
期刊介绍:
Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed