Johannes Textor, Franka Buytenhuijs, Dakota Rogers, Ève Mallet Gauthier, Shabaz Sultan, Inge M.N. Wortel, Kathrin Kalies, Anke Fähnrich, René Pagel, Heather J. Melichar, Jürgen Westermann, Judith N. Mandl
{"title":"T细胞受体库的机器学习分析确定了自反应性的序列特征","authors":"Johannes Textor, Franka Buytenhuijs, Dakota Rogers, Ève Mallet Gauthier, Shabaz Sultan, Inge M.N. Wortel, Kathrin Kalies, Anke Fähnrich, René Pagel, Heather J. Melichar, Jürgen Westermann, Judith N. Mandl","doi":"10.1016/j.cels.2023.11.004","DOIUrl":null,"url":null,"abstract":"<p>The T cell receptor (TCR) determines specificity and affinity for both foreign and self-peptides presented by the major histocompatibility complex (MHC). Although the strength of TCR interactions with self-pMHC impacts T cell function, it has been challenging to identify TCR sequence features that predict T cell fate. To discern patterns distinguishing TCRs from naive CD4<sup>+</sup> T cells with low versus high self-reactivity, we used data from 42 mice to train a machine learning (ML) algorithm that identifies population-level differences between TCR<em>β</em> sequence sets. This approach revealed that weakly self-reactive T cell populations were enriched for longer CDR3<em>β</em> regions and acidic amino acids. We tested our ML predictions of self-reactivity using retrogenic mice with fixed TCR<em>β</em> sequences. Extrapolating our analyses to independent datasets, we predicted high self-reactivity for regulatory T cells and slightly reduced self-reactivity for T cells responding to chronic infections. Our analyses suggest a potential trade-off between TCR repertoire diversity and self-reactivity. A record of this paper’s transparent peer review process is included in the <span>supplemental information</span>.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"63 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning analysis of the T cell receptor repertoire identifies sequence features of self-reactivity\",\"authors\":\"Johannes Textor, Franka Buytenhuijs, Dakota Rogers, Ève Mallet Gauthier, Shabaz Sultan, Inge M.N. Wortel, Kathrin Kalies, Anke Fähnrich, René Pagel, Heather J. Melichar, Jürgen Westermann, Judith N. Mandl\",\"doi\":\"10.1016/j.cels.2023.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The T cell receptor (TCR) determines specificity and affinity for both foreign and self-peptides presented by the major histocompatibility complex (MHC). Although the strength of TCR interactions with self-pMHC impacts T cell function, it has been challenging to identify TCR sequence features that predict T cell fate. To discern patterns distinguishing TCRs from naive CD4<sup>+</sup> T cells with low versus high self-reactivity, we used data from 42 mice to train a machine learning (ML) algorithm that identifies population-level differences between TCR<em>β</em> sequence sets. This approach revealed that weakly self-reactive T cell populations were enriched for longer CDR3<em>β</em> regions and acidic amino acids. We tested our ML predictions of self-reactivity using retrogenic mice with fixed TCR<em>β</em> sequences. Extrapolating our analyses to independent datasets, we predicted high self-reactivity for regulatory T cells and slightly reduced self-reactivity for T cells responding to chronic infections. Our analyses suggest a potential trade-off between TCR repertoire diversity and self-reactivity. A record of this paper’s transparent peer review process is included in the <span>supplemental information</span>.</p>\",\"PeriodicalId\":54348,\"journal\":{\"name\":\"Cell Systems\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2023.11.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.11.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Machine learning analysis of the T cell receptor repertoire identifies sequence features of self-reactivity
The T cell receptor (TCR) determines specificity and affinity for both foreign and self-peptides presented by the major histocompatibility complex (MHC). Although the strength of TCR interactions with self-pMHC impacts T cell function, it has been challenging to identify TCR sequence features that predict T cell fate. To discern patterns distinguishing TCRs from naive CD4+ T cells with low versus high self-reactivity, we used data from 42 mice to train a machine learning (ML) algorithm that identifies population-level differences between TCRβ sequence sets. This approach revealed that weakly self-reactive T cell populations were enriched for longer CDR3β regions and acidic amino acids. We tested our ML predictions of self-reactivity using retrogenic mice with fixed TCRβ sequences. Extrapolating our analyses to independent datasets, we predicted high self-reactivity for regulatory T cells and slightly reduced self-reactivity for T cells responding to chronic infections. Our analyses suggest a potential trade-off between TCR repertoire diversity and self-reactivity. A record of this paper’s transparent peer review process is included in the supplemental information.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.