Rasha M. Al-Makhlasawy, Mayada Khairy, Walid El-Shafai
{"title":"用于FBMC和OFDM系统中增强联合信道估计和干扰消除的递归神经网络:揭示5G网络的潜力","authors":"Rasha M. Al-Makhlasawy, Mayada Khairy, Walid El-Shafai","doi":"10.1186/s13634-023-01077-0","DOIUrl":null,"url":null,"abstract":"<p>FBMC is a pivotal system in 5G, serving as a cornerstone for efficient use of available bandwidth while simultaneously meeting stringent requirements for high spectral efficiency. Notably, FBMC harnesses the power of multicarrier modulation (MC), a good alternative to orthogonal frequency division multiplexing (OFDM) technology that supports fourth-generation (4G) systems. The wireless communications field is full of challenges, the most important of which are channel estimation and interference cancellation, both of which deserve comprehensive study to increase the efficiency of data transmission. In this paper, our investigation takes a deliberate step towards the convergence of two prominent modulation models: OFDM and FBMC. We specifically contrast these modulation techniques with the intricate field of joint channel estimation and interference cancellation (JCEIC). In this research study, we take advantage of recurrent neural networks' (RNNs') efficiency as a vehicular channel to perform precise channel estimation and recovery of uncorrupted transmitted signals, thereby lowering the bit error rate (BER). Our channel estimation for a dual selective channel is based on the thoughtful placement of pilots scattered over the temporal and frequency dimensions, and is further improved by the interference cancellation method of low complexity that was selected. Our JCEIC proposal aims to integrate RNNs carefully, using the output sequences of JCEIC algorithms as useful inputs to this neural architecture. By clearly demonstrating a decrease in BER as compared to traditional approaches, it is evident that the performance of the novel approach is near to that of a perfect channel. Additionally, a comparison of the performance of FBMC and OFDM systems at various signal-to-noise ratios reveals a clear performance divide that favors the former in terms of system efficiency. The BER is restricted by FBMC to a commendable threshold of less than 0.1 at a modest 5 dB, continuing the higher trend started by its improved RNN-based channel estimate. The accuracy of channel estimation is clearly improved by this paradigm shift, and the computing complexity typical of 5G networks is also clearly reduced.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrent neural networks for enhanced joint channel estimation and interference cancellation in FBMC and OFDM systems: unveiling the potential for 5G networks\",\"authors\":\"Rasha M. Al-Makhlasawy, Mayada Khairy, Walid El-Shafai\",\"doi\":\"10.1186/s13634-023-01077-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>FBMC is a pivotal system in 5G, serving as a cornerstone for efficient use of available bandwidth while simultaneously meeting stringent requirements for high spectral efficiency. Notably, FBMC harnesses the power of multicarrier modulation (MC), a good alternative to orthogonal frequency division multiplexing (OFDM) technology that supports fourth-generation (4G) systems. The wireless communications field is full of challenges, the most important of which are channel estimation and interference cancellation, both of which deserve comprehensive study to increase the efficiency of data transmission. In this paper, our investigation takes a deliberate step towards the convergence of two prominent modulation models: OFDM and FBMC. We specifically contrast these modulation techniques with the intricate field of joint channel estimation and interference cancellation (JCEIC). In this research study, we take advantage of recurrent neural networks' (RNNs') efficiency as a vehicular channel to perform precise channel estimation and recovery of uncorrupted transmitted signals, thereby lowering the bit error rate (BER). Our channel estimation for a dual selective channel is based on the thoughtful placement of pilots scattered over the temporal and frequency dimensions, and is further improved by the interference cancellation method of low complexity that was selected. Our JCEIC proposal aims to integrate RNNs carefully, using the output sequences of JCEIC algorithms as useful inputs to this neural architecture. By clearly demonstrating a decrease in BER as compared to traditional approaches, it is evident that the performance of the novel approach is near to that of a perfect channel. Additionally, a comparison of the performance of FBMC and OFDM systems at various signal-to-noise ratios reveals a clear performance divide that favors the former in terms of system efficiency. The BER is restricted by FBMC to a commendable threshold of less than 0.1 at a modest 5 dB, continuing the higher trend started by its improved RNN-based channel estimate. The accuracy of channel estimation is clearly improved by this paradigm shift, and the computing complexity typical of 5G networks is also clearly reduced.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-023-01077-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-023-01077-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Recurrent neural networks for enhanced joint channel estimation and interference cancellation in FBMC and OFDM systems: unveiling the potential for 5G networks
FBMC is a pivotal system in 5G, serving as a cornerstone for efficient use of available bandwidth while simultaneously meeting stringent requirements for high spectral efficiency. Notably, FBMC harnesses the power of multicarrier modulation (MC), a good alternative to orthogonal frequency division multiplexing (OFDM) technology that supports fourth-generation (4G) systems. The wireless communications field is full of challenges, the most important of which are channel estimation and interference cancellation, both of which deserve comprehensive study to increase the efficiency of data transmission. In this paper, our investigation takes a deliberate step towards the convergence of two prominent modulation models: OFDM and FBMC. We specifically contrast these modulation techniques with the intricate field of joint channel estimation and interference cancellation (JCEIC). In this research study, we take advantage of recurrent neural networks' (RNNs') efficiency as a vehicular channel to perform precise channel estimation and recovery of uncorrupted transmitted signals, thereby lowering the bit error rate (BER). Our channel estimation for a dual selective channel is based on the thoughtful placement of pilots scattered over the temporal and frequency dimensions, and is further improved by the interference cancellation method of low complexity that was selected. Our JCEIC proposal aims to integrate RNNs carefully, using the output sequences of JCEIC algorithms as useful inputs to this neural architecture. By clearly demonstrating a decrease in BER as compared to traditional approaches, it is evident that the performance of the novel approach is near to that of a perfect channel. Additionally, a comparison of the performance of FBMC and OFDM systems at various signal-to-noise ratios reveals a clear performance divide that favors the former in terms of system efficiency. The BER is restricted by FBMC to a commendable threshold of less than 0.1 at a modest 5 dB, continuing the higher trend started by its improved RNN-based channel estimate. The accuracy of channel estimation is clearly improved by this paradigm shift, and the computing complexity typical of 5G networks is also clearly reduced.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.