车载网络低复杂度增强VVC编码器

IF 1.9 4区 工程技术 Q2 Engineering EURASIP Journal on Advances in Signal Processing Pub Date : 2023-11-27 DOI:10.1186/s13634-023-01083-2
Xiantao Jiang, Wei Li, Tian Song
{"title":"车载网络低复杂度增强VVC编码器","authors":"Xiantao Jiang, Wei Li, Tian Song","doi":"10.1186/s13634-023-01083-2","DOIUrl":null,"url":null,"abstract":"<p>In intelligent transportation systems, real-time video streaming via vehicle networks has been seen as a vital difficulty. The goal of this paper is to decrease the computational complexity of the versatile video coding (VVC) encoder for VANETs. In this paper, a low-complexity enhancement VVC encoder is designed for vehicular communication. First, a fast coding unit (CU) partitioning scheme based on CU texture features is proposed in VVC, which aims to decide the final type of CU partition by calculating CU texture complexity and gray-level co-occurrence matrix (GLCM). Second, to reduce the number of candidate prediction mode types in advance, a fast chroma intra-prediction mode optimization technique based on CU texture complexity aims to combine intra-prediction mode features. Moreover, the simulation outcomes demonstrate that the overall approach may substantially reduce encoding time, while the loss of coding efficiency is reasonably low. The encoding time can be reduced by up to 53.29% when compared to the VVC reference model, although the average BD rate is only raised by 1.26%. The suggested VVC encoder is also hardware-friendly and has a minimal level of complexity for video encoders used in connected vehicle applications.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-complexity enhancement VVC encoder for vehicular networks\",\"authors\":\"Xiantao Jiang, Wei Li, Tian Song\",\"doi\":\"10.1186/s13634-023-01083-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In intelligent transportation systems, real-time video streaming via vehicle networks has been seen as a vital difficulty. The goal of this paper is to decrease the computational complexity of the versatile video coding (VVC) encoder for VANETs. In this paper, a low-complexity enhancement VVC encoder is designed for vehicular communication. First, a fast coding unit (CU) partitioning scheme based on CU texture features is proposed in VVC, which aims to decide the final type of CU partition by calculating CU texture complexity and gray-level co-occurrence matrix (GLCM). Second, to reduce the number of candidate prediction mode types in advance, a fast chroma intra-prediction mode optimization technique based on CU texture complexity aims to combine intra-prediction mode features. Moreover, the simulation outcomes demonstrate that the overall approach may substantially reduce encoding time, while the loss of coding efficiency is reasonably low. The encoding time can be reduced by up to 53.29% when compared to the VVC reference model, although the average BD rate is only raised by 1.26%. The suggested VVC encoder is also hardware-friendly and has a minimal level of complexity for video encoders used in connected vehicle applications.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-023-01083-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-023-01083-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在智能交通系统中,通过车辆网络的实时视频流被视为一个关键难题。本文的目标是降低VANETs通用视频编码(VVC)编码器的计算复杂度。本文设计了一种用于车载通信的低复杂度增强VVC编码器。首先,在VVC中提出了一种基于CU纹理特征的快速编码单元(CU)划分方案,通过计算CU纹理复杂度和灰度共生矩阵(GLCM)来确定最终的CU划分类型;其次,为了提前减少候选预测模式类型的数量,基于CU纹理复杂度的色度内预测模式快速优化技术旨在结合内预测模式特征。此外,仿真结果表明,整体方法可以大大减少编码时间,而编码效率的损失是相当低的。与VVC参考模型相比,编码时间最多可减少53.29%,但平均BD率仅提高1.26%。建议的VVC编码器也是硬件友好的,并且对于联网汽车应用中使用的视频编码器具有最小的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-complexity enhancement VVC encoder for vehicular networks

In intelligent transportation systems, real-time video streaming via vehicle networks has been seen as a vital difficulty. The goal of this paper is to decrease the computational complexity of the versatile video coding (VVC) encoder for VANETs. In this paper, a low-complexity enhancement VVC encoder is designed for vehicular communication. First, a fast coding unit (CU) partitioning scheme based on CU texture features is proposed in VVC, which aims to decide the final type of CU partition by calculating CU texture complexity and gray-level co-occurrence matrix (GLCM). Second, to reduce the number of candidate prediction mode types in advance, a fast chroma intra-prediction mode optimization technique based on CU texture complexity aims to combine intra-prediction mode features. Moreover, the simulation outcomes demonstrate that the overall approach may substantially reduce encoding time, while the loss of coding efficiency is reasonably low. The encoding time can be reduced by up to 53.29% when compared to the VVC reference model, although the average BD rate is only raised by 1.26%. The suggested VVC encoder is also hardware-friendly and has a minimal level of complexity for video encoders used in connected vehicle applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURASIP Journal on Advances in Signal Processing
EURASIP Journal on Advances in Signal Processing 工程技术-工程:电子与电气
CiteScore
3.50
自引率
10.50%
发文量
109
审稿时长
2.6 months
期刊介绍: The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.
期刊最新文献
Double-layer data-hiding mechanism for ECG signals Maximum radial pattern matching for minimum star map identification Optimized power and speed of Split-Radix, Radix-4 and Radix-2 FFT structures Performance analysis of unconstrained partitioned-block frequency-domain adaptive filters in under-modeling scenarios Maximum length binary sequences and spectral power distribution of periodic signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1