塞万湖温度场和水流场的现今结构

IF 0.9 4区 环境科学与生态学 Q4 WATER RESOURCES Water Resources Pub Date : 2023-11-24 DOI:10.1134/s0097807823700161
S. A. Poddubnyi, B. K. Gabrielyan, A. I. Tsvetkov
{"title":"塞万湖温度场和水流场的现今结构","authors":"S. A. Poddubnyi, B. K. Gabrielyan, A. I. Tsvetkov","doi":"10.1134/s0097807823700161","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Long-term features of the vertical and horizontal structure of water temperature field in Lake Sevan are discussed. It is shown that the climate warming has led to an increase in epilimnion temperature in Bol’shoi Sevan in July by 2.0‒3.0°C. The increase in water temperature in hypolimnion was not greater than 1.1°C. In autumn (October), the epilimnion became 1.2°C warmer, while hypolimnion temperature practically has not changed on the average over years. Temperature fields were used to calculate the density currents in summer and autumn periods. A dominating cyclonic water circulation was revealed all over the lake, confirmed by chlorophyll distribution by satellite image data. In the case of large horizontal gradients of water density, the flow velocity can reach 50 cm/s. Autonomous buoy stations revealed a wide range of water temperature variations due to internal waves of different nature. The reversible vertical mixing of water mass by internal waves plays an important role in the distribution of nutrients and plankton within the water mass. The water level rise by ~3 m, unlike it drop by 1981 by 18.48, has not caused any significant changes in lake hydrological regime.</p>","PeriodicalId":49368,"journal":{"name":"Water Resources","volume":"5 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Present-Day Structure of the Temperature and Current Fields in Lake Sevan\",\"authors\":\"S. A. Poddubnyi, B. K. Gabrielyan, A. I. Tsvetkov\",\"doi\":\"10.1134/s0097807823700161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Long-term features of the vertical and horizontal structure of water temperature field in Lake Sevan are discussed. It is shown that the climate warming has led to an increase in epilimnion temperature in Bol’shoi Sevan in July by 2.0‒3.0°C. The increase in water temperature in hypolimnion was not greater than 1.1°C. In autumn (October), the epilimnion became 1.2°C warmer, while hypolimnion temperature practically has not changed on the average over years. Temperature fields were used to calculate the density currents in summer and autumn periods. A dominating cyclonic water circulation was revealed all over the lake, confirmed by chlorophyll distribution by satellite image data. In the case of large horizontal gradients of water density, the flow velocity can reach 50 cm/s. Autonomous buoy stations revealed a wide range of water temperature variations due to internal waves of different nature. The reversible vertical mixing of water mass by internal waves plays an important role in the distribution of nutrients and plankton within the water mass. The water level rise by ~3 m, unlike it drop by 1981 by 18.48, has not caused any significant changes in lake hydrological regime.</p>\",\"PeriodicalId\":49368,\"journal\":{\"name\":\"Water Resources\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1134/s0097807823700161\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1134/s0097807823700161","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要讨论了塞万湖水温场纵向和横向结构的长期特征。结果表明,气候变暖导致7月波沙伊塞万地区的最低气温升高2.0 ~ 3.0℃。低阴离子条件下水温升高不大于1.1℃。秋季(10月),阴离子温度升高1.2°C,而阴离子温度多年平均几乎没有变化。利用温度场计算了夏季和秋季的密度流。卫星影像资料的叶绿素分布证实了湖上主要的气旋水循环。在水密度水平梯度较大的情况下,流速可达50 cm/s。自主浮标站揭示了不同性质的内波对水温变化的影响。内波对水体的可逆垂直混合对水体内营养物和浮游生物的分布起着重要的作用。与1981年18.48的水位下降不同,3 m的水位上升没有引起湖泊水文状况的显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Present-Day Structure of the Temperature and Current Fields in Lake Sevan

Abstract

Long-term features of the vertical and horizontal structure of water temperature field in Lake Sevan are discussed. It is shown that the climate warming has led to an increase in epilimnion temperature in Bol’shoi Sevan in July by 2.0‒3.0°C. The increase in water temperature in hypolimnion was not greater than 1.1°C. In autumn (October), the epilimnion became 1.2°C warmer, while hypolimnion temperature practically has not changed on the average over years. Temperature fields were used to calculate the density currents in summer and autumn periods. A dominating cyclonic water circulation was revealed all over the lake, confirmed by chlorophyll distribution by satellite image data. In the case of large horizontal gradients of water density, the flow velocity can reach 50 cm/s. Autonomous buoy stations revealed a wide range of water temperature variations due to internal waves of different nature. The reversible vertical mixing of water mass by internal waves plays an important role in the distribution of nutrients and plankton within the water mass. The water level rise by ~3 m, unlike it drop by 1981 by 18.48, has not caused any significant changes in lake hydrological regime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources
Water Resources 环境科学-水资源
CiteScore
1.60
自引率
20.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: Water Resources is a journal that publishes articles on the assessment of water resources, integrated water resource use, water quality, and environmental protection. The journal covers many areas of research, including prediction of variations in continental water resources and regime; hydrophysical, hydrodynamic, hydrochemical and hydrobiological processes, environmental aspects of water quality and protection; economic, social, and legal aspects of water-resource development; and experimental methods of studies.
期刊最新文献
Evaluating Operational Performance and Sustainability of Water Supply Reservoirs in the Yesilirmak Basin, Turkey Experimental Study on Venting of Lock Exchange Turbidity Current Long-Term Dynamics of Major Ion Concentrations in the Water of Lake Teletskoe Tributaries in the Context of Biogeochemical Conditions in Their Drainage Basins The Effect of the Physicochemical Properties and the Composition of Dubna River Water on the State of the Processes of Lipid Peroxidation in Biological Systems Ionic Composition of Different Types of Natural Water Sources in the River Basins of the Crimean Mountains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1