Chun-Yu Hu, Li-Sha Hu, Lin Yuan, Dian-Jie Lu, Lei Lyu, Yi-Qiang Chen
{"title":"FedIERF:可穿戴健康监测的联邦增量极度随机森林","authors":"Chun-Yu Hu, Li-Sha Hu, Lin Yuan, Dian-Jie Lu, Lei Lyu, Yi-Qiang Chen","doi":"10.1007/s11390-023-3009-0","DOIUrl":null,"url":null,"abstract":"<p>Wearable health monitoring is a crucial technical tool that offers early warning for chronic diseases due to its superior portability and low power consumption. However, most wearable health data is distributed across different organizations, such as hospitals, research institutes, and companies, and can only be accessed by the owners of the data in compliance with data privacy regulations. The first challenge addressed in this paper is communicating in a privacy-preserving manner among different organizations. The second technical challenge is handling the dynamic expansion of the federation without model retraining. To address the first challenge, we propose a horizontal federated learning method called Federated Extremely Random Forest (FedERF). Its contribution-based splitting score computing mechanism significantly mitigates the impact of privacy protection constraints on model performance. Based on FedERF, we present a federated incremental learning method called Federated Incremental Extremely Random Forest (FedIERF) to address the second technical challenge. FedIERF introduces a hardness-driven weighting mechanism and an importance-based updating scheme to update the existing federated model incrementally. The experiments show that FedERF achieves comparable performance with non-federated methods, and FedIERF effectively addresses the dynamic expansion of the federation. This opens up opportunities for cooperation between different organizations in wearable health monitoring.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"36 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FedIERF: Federated Incremental Extremely Random Forest for Wearable Health Monitoring\",\"authors\":\"Chun-Yu Hu, Li-Sha Hu, Lin Yuan, Dian-Jie Lu, Lei Lyu, Yi-Qiang Chen\",\"doi\":\"10.1007/s11390-023-3009-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wearable health monitoring is a crucial technical tool that offers early warning for chronic diseases due to its superior portability and low power consumption. However, most wearable health data is distributed across different organizations, such as hospitals, research institutes, and companies, and can only be accessed by the owners of the data in compliance with data privacy regulations. The first challenge addressed in this paper is communicating in a privacy-preserving manner among different organizations. The second technical challenge is handling the dynamic expansion of the federation without model retraining. To address the first challenge, we propose a horizontal federated learning method called Federated Extremely Random Forest (FedERF). Its contribution-based splitting score computing mechanism significantly mitigates the impact of privacy protection constraints on model performance. Based on FedERF, we present a federated incremental learning method called Federated Incremental Extremely Random Forest (FedIERF) to address the second technical challenge. FedIERF introduces a hardness-driven weighting mechanism and an importance-based updating scheme to update the existing federated model incrementally. The experiments show that FedERF achieves comparable performance with non-federated methods, and FedIERF effectively addresses the dynamic expansion of the federation. This opens up opportunities for cooperation between different organizations in wearable health monitoring.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-023-3009-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-023-3009-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
FedIERF: Federated Incremental Extremely Random Forest for Wearable Health Monitoring
Wearable health monitoring is a crucial technical tool that offers early warning for chronic diseases due to its superior portability and low power consumption. However, most wearable health data is distributed across different organizations, such as hospitals, research institutes, and companies, and can only be accessed by the owners of the data in compliance with data privacy regulations. The first challenge addressed in this paper is communicating in a privacy-preserving manner among different organizations. The second technical challenge is handling the dynamic expansion of the federation without model retraining. To address the first challenge, we propose a horizontal federated learning method called Federated Extremely Random Forest (FedERF). Its contribution-based splitting score computing mechanism significantly mitigates the impact of privacy protection constraints on model performance. Based on FedERF, we present a federated incremental learning method called Federated Incremental Extremely Random Forest (FedIERF) to address the second technical challenge. FedIERF introduces a hardness-driven weighting mechanism and an importance-based updating scheme to update the existing federated model incrementally. The experiments show that FedERF achieves comparable performance with non-federated methods, and FedIERF effectively addresses the dynamic expansion of the federation. This opens up opportunities for cooperation between different organizations in wearable health monitoring.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas