Chen Fu, Andrea Turrini, Xiaowei Huang, Lei Song, Yuan Feng, Li-Jun Zhang
{"title":"概率多智能体系统的模型检验","authors":"Chen Fu, Andrea Turrini, Xiaowei Huang, Lei Song, Yuan Feng, Li-Jun Zhang","doi":"10.1007/s11390-022-1218-6","DOIUrl":null,"url":null,"abstract":"<p>In multiagent systems, agents usually do not have complete information of the whole system, which makes the analysis of such systems hard. The incompleteness of information is normally modelled by means of accessibility relations, and the schedulers consistent with such relations are called uniform. In this paper, we consider probabilistic multiagent systems with accessibility relations and focus on the model checking problem with respect to the probabilistic epistemic temporal logic, which can specify both temporal and epistemic properties. However, the problem is undecidable in general. We show that it becomes decidable when restricted to memoryless uniform schedulers. Then, we present two algorithms for this case: one reduces the model checking problem into a mixed integer non-linear programming (MINLP) problem, which can then be solved by Satisfiability Modulo Theories (SMT) solvers, and the other is an approximate algorithm based on the upper confidence bounds applied to trees (UCT) algorithm, which can return a result whenever queried. These algorithms have been implemented in an existing model checker and then validated on experiments. The experimental results show the efficiency and extendability of these algorithms, and the algorithm based on UCT outperforms the one based on MINLP in most cases.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"14 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Checking for Probabilistic Multiagent Systems\",\"authors\":\"Chen Fu, Andrea Turrini, Xiaowei Huang, Lei Song, Yuan Feng, Li-Jun Zhang\",\"doi\":\"10.1007/s11390-022-1218-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In multiagent systems, agents usually do not have complete information of the whole system, which makes the analysis of such systems hard. The incompleteness of information is normally modelled by means of accessibility relations, and the schedulers consistent with such relations are called uniform. In this paper, we consider probabilistic multiagent systems with accessibility relations and focus on the model checking problem with respect to the probabilistic epistemic temporal logic, which can specify both temporal and epistemic properties. However, the problem is undecidable in general. We show that it becomes decidable when restricted to memoryless uniform schedulers. Then, we present two algorithms for this case: one reduces the model checking problem into a mixed integer non-linear programming (MINLP) problem, which can then be solved by Satisfiability Modulo Theories (SMT) solvers, and the other is an approximate algorithm based on the upper confidence bounds applied to trees (UCT) algorithm, which can return a result whenever queried. These algorithms have been implemented in an existing model checker and then validated on experiments. The experimental results show the efficiency and extendability of these algorithms, and the algorithm based on UCT outperforms the one based on MINLP in most cases.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-022-1218-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-022-1218-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Model Checking for Probabilistic Multiagent Systems
In multiagent systems, agents usually do not have complete information of the whole system, which makes the analysis of such systems hard. The incompleteness of information is normally modelled by means of accessibility relations, and the schedulers consistent with such relations are called uniform. In this paper, we consider probabilistic multiagent systems with accessibility relations and focus on the model checking problem with respect to the probabilistic epistemic temporal logic, which can specify both temporal and epistemic properties. However, the problem is undecidable in general. We show that it becomes decidable when restricted to memoryless uniform schedulers. Then, we present two algorithms for this case: one reduces the model checking problem into a mixed integer non-linear programming (MINLP) problem, which can then be solved by Satisfiability Modulo Theories (SMT) solvers, and the other is an approximate algorithm based on the upper confidence bounds applied to trees (UCT) algorithm, which can return a result whenever queried. These algorithms have been implemented in an existing model checker and then validated on experiments. The experimental results show the efficiency and extendability of these algorithms, and the algorithm based on UCT outperforms the one based on MINLP in most cases.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas