具有特殊活性位点的先进电催化剂用于电化学水分解

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Infomat Pub Date : 2023-11-27 DOI:10.1002/inf2.12494
Hainan Sun, Xiaomin Xu, Hyunseung Kim, Zongping Shao, WooChul Jung
{"title":"具有特殊活性位点的先进电催化剂用于电化学水分解","authors":"Hainan Sun,&nbsp;Xiaomin Xu,&nbsp;Hyunseung Kim,&nbsp;Zongping Shao,&nbsp;WooChul Jung","doi":"10.1002/inf2.12494","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical water splitting represents a promising technology for green hydrogen production. To design advanced electrocatalysts, it is crucial to identify their active sites and interpret the relationship between their structures and performance. Materials extensively studied as electrocatalysts include noble-metal-based (e.g., Ru, Ir, and Pt) and non-noble-metal-based (e.g., <i>3d</i> transition metals) compounds. Recently, advancements in characterization techniques and theoretical calculations have revealed novel and unusual active sites. The present review highlights the latest achievements in the discovery and identification of various unconventional active sites for electrochemical water splitting, with a focus on state-of-the-art strategies for determining true active sites and establishing structure–activity relationships. Furthermore, we discuss the remaining challenges and future perspectives for the development of next-generation electrocatalysts with unusual active sites. By presenting a fresh perspective on the unconventional reaction sites involved in electrochemical water splitting, this review aims to provide valuable guidance for the future study of electrocatalysts in industrial applications.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12494","citationCount":"0","resultStr":"{\"title\":\"Advanced electrocatalysts with unusual active sites for electrochemical water splitting\",\"authors\":\"Hainan Sun,&nbsp;Xiaomin Xu,&nbsp;Hyunseung Kim,&nbsp;Zongping Shao,&nbsp;WooChul Jung\",\"doi\":\"10.1002/inf2.12494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical water splitting represents a promising technology for green hydrogen production. To design advanced electrocatalysts, it is crucial to identify their active sites and interpret the relationship between their structures and performance. Materials extensively studied as electrocatalysts include noble-metal-based (e.g., Ru, Ir, and Pt) and non-noble-metal-based (e.g., <i>3d</i> transition metals) compounds. Recently, advancements in characterization techniques and theoretical calculations have revealed novel and unusual active sites. The present review highlights the latest achievements in the discovery and identification of various unconventional active sites for electrochemical water splitting, with a focus on state-of-the-art strategies for determining true active sites and establishing structure–activity relationships. Furthermore, we discuss the remaining challenges and future perspectives for the development of next-generation electrocatalysts with unusual active sites. By presenting a fresh perspective on the unconventional reaction sites involved in electrochemical water splitting, this review aims to provide valuable guidance for the future study of electrocatalysts in industrial applications.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12494\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12494\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12494","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学水分解是一种很有前途的绿色制氢技术。为了设计先进的电催化剂,确定其活性位点并解释其结构与性能之间的关系至关重要。作为电催化剂广泛研究的材料包括贵金属基(如Ru、Ir和Pt)和非贵金属基(如3d过渡金属)化合物。最近,表征技术和理论计算的进步揭示了新的和不寻常的活性位点。本文综述了电化学水分解中各种非常规活性位点的发现和鉴定的最新成果,重点介绍了确定真正活性位点和建立构效关系的最新策略。此外,我们还讨论了具有特殊活性位点的下一代电催化剂的发展面临的挑战和未来的前景。本文综述了电化学水分解中涉及的非常规反应位点,旨在为今后电催化剂的工业应用研究提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced electrocatalysts with unusual active sites for electrochemical water splitting

Electrochemical water splitting represents a promising technology for green hydrogen production. To design advanced electrocatalysts, it is crucial to identify their active sites and interpret the relationship between their structures and performance. Materials extensively studied as electrocatalysts include noble-metal-based (e.g., Ru, Ir, and Pt) and non-noble-metal-based (e.g., 3d transition metals) compounds. Recently, advancements in characterization techniques and theoretical calculations have revealed novel and unusual active sites. The present review highlights the latest achievements in the discovery and identification of various unconventional active sites for electrochemical water splitting, with a focus on state-of-the-art strategies for determining true active sites and establishing structure–activity relationships. Furthermore, we discuss the remaining challenges and future perspectives for the development of next-generation electrocatalysts with unusual active sites. By presenting a fresh perspective on the unconventional reaction sites involved in electrochemical water splitting, this review aims to provide valuable guidance for the future study of electrocatalysts in industrial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
期刊最新文献
Continuous synthesis of metal oxide-supported high-entropy alloy nanoparticles with remarkable durability and catalytic activity in the hydrogen reduction reaction Bifunctional self-segregated electrolyte realizing high-performance zinc-iodine batteries Computing imaging in shortwave infrared bands enabled by MoTe2/Si 2D-3D heterojunction-based photodiode Cover Image Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1