Kazi Naimul Hoque, Francisco Presuel-Moreno, Manzurul Nazim
{"title":"加速电迁移法评价混凝土中钢筋的氯化物腐蚀","authors":"Kazi Naimul Hoque, Francisco Presuel-Moreno, Manzurul Nazim","doi":"10.1155/2023/6686519","DOIUrl":null,"url":null,"abstract":"Two distinct binary blended concrete mixes were prepared for the study. The first mix involved a cement replacement of 50% slag, denoted as SL. The second mix incorporated a cement replacement of 20% fly ash, referred to as FA. No chlorides were added during the preparation of these concrete specimens. To accelerate chloride transport, electromigration was employed by placing specimens with varying reservoir lengths (ranging from 2.5 cm to 17.5 cm) on their top surfaces. These reservoirs were subsequently filled with a 10% NaCl solution. In this paper, corrosion propagation was monitored over a period of approximately 650 days using electrochemical measurements such as open circuit potential, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS). The evolution of rebar potential, polarization resistance, solution resistance, and corrosion current were analyzed to understand the corrosion behavior. This paper focuses on how the length of the solution reservoirs influences the corrosion-related parameters such as polarization resistance, solution resistance, rebar potential, and corrosion current. During the monitored propagation period, the corrosion current values (last 7 sets of readings) exhibited higher magnitudes for the embedded rebars in specimens made with SL mix in comparison to those made with FA mix. Corrosion current measurements likewise showed an increasing trend as the reservoir lengths increased. None of the specimens had any visible cracks or corroded products that could reach the concrete surface throughout the monitored period. The experimental results provide insights into the corrosion mechanisms and the effectiveness of accelerated corrosion techniques in simulating real-life conditions.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated Electromigration Approach to Evaluate Chloride-Induced Corrosion of Steel Rebar Embedded in Concrete\",\"authors\":\"Kazi Naimul Hoque, Francisco Presuel-Moreno, Manzurul Nazim\",\"doi\":\"10.1155/2023/6686519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two distinct binary blended concrete mixes were prepared for the study. The first mix involved a cement replacement of 50% slag, denoted as SL. The second mix incorporated a cement replacement of 20% fly ash, referred to as FA. No chlorides were added during the preparation of these concrete specimens. To accelerate chloride transport, electromigration was employed by placing specimens with varying reservoir lengths (ranging from 2.5 cm to 17.5 cm) on their top surfaces. These reservoirs were subsequently filled with a 10% NaCl solution. In this paper, corrosion propagation was monitored over a period of approximately 650 days using electrochemical measurements such as open circuit potential, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS). The evolution of rebar potential, polarization resistance, solution resistance, and corrosion current were analyzed to understand the corrosion behavior. This paper focuses on how the length of the solution reservoirs influences the corrosion-related parameters such as polarization resistance, solution resistance, rebar potential, and corrosion current. During the monitored propagation period, the corrosion current values (last 7 sets of readings) exhibited higher magnitudes for the embedded rebars in specimens made with SL mix in comparison to those made with FA mix. Corrosion current measurements likewise showed an increasing trend as the reservoir lengths increased. None of the specimens had any visible cracks or corroded products that could reach the concrete surface throughout the monitored period. The experimental results provide insights into the corrosion mechanisms and the effectiveness of accelerated corrosion techniques in simulating real-life conditions.\",\"PeriodicalId\":7345,\"journal\":{\"name\":\"Advances in Materials Science and Engineering\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6686519\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2023/6686519","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Accelerated Electromigration Approach to Evaluate Chloride-Induced Corrosion of Steel Rebar Embedded in Concrete
Two distinct binary blended concrete mixes were prepared for the study. The first mix involved a cement replacement of 50% slag, denoted as SL. The second mix incorporated a cement replacement of 20% fly ash, referred to as FA. No chlorides were added during the preparation of these concrete specimens. To accelerate chloride transport, electromigration was employed by placing specimens with varying reservoir lengths (ranging from 2.5 cm to 17.5 cm) on their top surfaces. These reservoirs were subsequently filled with a 10% NaCl solution. In this paper, corrosion propagation was monitored over a period of approximately 650 days using electrochemical measurements such as open circuit potential, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS). The evolution of rebar potential, polarization resistance, solution resistance, and corrosion current were analyzed to understand the corrosion behavior. This paper focuses on how the length of the solution reservoirs influences the corrosion-related parameters such as polarization resistance, solution resistance, rebar potential, and corrosion current. During the monitored propagation period, the corrosion current values (last 7 sets of readings) exhibited higher magnitudes for the embedded rebars in specimens made with SL mix in comparison to those made with FA mix. Corrosion current measurements likewise showed an increasing trend as the reservoir lengths increased. None of the specimens had any visible cracks or corroded products that could reach the concrete surface throughout the monitored period. The experimental results provide insights into the corrosion mechanisms and the effectiveness of accelerated corrosion techniques in simulating real-life conditions.
期刊介绍:
Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to:
-Chemistry and fundamental properties of matter
-Material synthesis, fabrication, manufacture, and processing
-Magnetic, electrical, thermal, and optical properties of materials
-Strength, durability, and mechanical behaviour of materials
-Consideration of materials in structural design, modelling, and engineering
-Green and renewable materials, and consideration of materials’ life cycles
-Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)