当地气候条件影响大黄蜂(Bombus spp)对树莓花(Rubus fruticosus)的觅食者大小和访视率

IF 1 3区 农林科学 Q3 ENTOMOLOGY Journal of Insect Behavior Pub Date : 2022-04-28 DOI:10.1007/s10905-022-09797-1
Cassandra Uthoff, Graeme Ruxton
{"title":"当地气候条件影响大黄蜂(Bombus spp)对树莓花(Rubus fruticosus)的觅食者大小和访视率","authors":"Cassandra Uthoff, Graeme Ruxton","doi":"10.1007/s10905-022-09797-1","DOIUrl":null,"url":null,"abstract":"<p>Bumble bees (<i>Bombus</i>; Hymenoptera) are crucial pollinators for many agricultural crops, but their numbers have declined - with climate change as a possible driver. Different aspects of local weather conditions can have substantial effects on bumble bees’ ability to forage. Here we made 501 observations of bumblebee workers on bramble flowers (<i>Rubus fruticosus</i>) to explore how the characteristic sizes of foragers active and their individual rate of movement between flowers were correlated with aspects of weather. Firstly, we found that increased ambient temperature is correlated to reduced activity in larger workers. Moreover, while higher humidity was linked to an increase in smaller workers, an increase in cloud cover led their numbers to decrease. Visitation rate and temperature showed a significant negative relationship whereas no other weather aspect affected visitation rate significantly. Our results suggest that predicted rises in ambient temperatures will adversely affect bumble bee foraging, and particularly so for larger-bodied workers. We anticipate that this study can be used as a foundation for longer-term and more detailed studies on bumble bee foraging and colony performance. Such work is vital to identify management measures to mitigate pollinator declines and preserve food security.</p>","PeriodicalId":16180,"journal":{"name":"Journal of Insect Behavior","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Weather Conditions Affect Forager Size and Visitation Rate on Bramble Flowers (Rubus fruticosus) in Bumble Bees (Bombus spp)\",\"authors\":\"Cassandra Uthoff, Graeme Ruxton\",\"doi\":\"10.1007/s10905-022-09797-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bumble bees (<i>Bombus</i>; Hymenoptera) are crucial pollinators for many agricultural crops, but their numbers have declined - with climate change as a possible driver. Different aspects of local weather conditions can have substantial effects on bumble bees’ ability to forage. Here we made 501 observations of bumblebee workers on bramble flowers (<i>Rubus fruticosus</i>) to explore how the characteristic sizes of foragers active and their individual rate of movement between flowers were correlated with aspects of weather. Firstly, we found that increased ambient temperature is correlated to reduced activity in larger workers. Moreover, while higher humidity was linked to an increase in smaller workers, an increase in cloud cover led their numbers to decrease. Visitation rate and temperature showed a significant negative relationship whereas no other weather aspect affected visitation rate significantly. Our results suggest that predicted rises in ambient temperatures will adversely affect bumble bee foraging, and particularly so for larger-bodied workers. We anticipate that this study can be used as a foundation for longer-term and more detailed studies on bumble bee foraging and colony performance. Such work is vital to identify management measures to mitigate pollinator declines and preserve food security.</p>\",\"PeriodicalId\":16180,\"journal\":{\"name\":\"Journal of Insect Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Behavior\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10905-022-09797-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Behavior","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10905-022-09797-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大黄蜂;膜翅目昆虫是许多农作物的重要传粉媒介,但它们的数量已经减少——气候变化可能是一个驱动因素。当地天气条件的不同方面会对大黄蜂的觅食能力产生重大影响。在此,我们对在荆棘花(Rubus fruticosus)上工作的大黄蜂进行了501次观察,以探索活跃的觅食工蜂的特征大小及其个体在花之间的移动速度与天气方面的关系。首先,我们发现环境温度升高与体型较大的工人的活动减少有关。此外,虽然较高的湿度与小型工人的增加有关,但云量的增加导致它们的数量减少。游客率与气温呈显著负相关,其他天气因素对游客率均无显著影响。我们的研究结果表明,预计的环境温度上升将对大黄蜂的觅食产生不利影响,尤其是对体型较大的工蜂。我们期望这项研究可以作为对大黄蜂觅食和群体性能进行更长期和更详细研究的基础。这项工作对于确定管理措施以减轻传粉媒介的减少和维护粮食安全至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local Weather Conditions Affect Forager Size and Visitation Rate on Bramble Flowers (Rubus fruticosus) in Bumble Bees (Bombus spp)

Bumble bees (Bombus; Hymenoptera) are crucial pollinators for many agricultural crops, but their numbers have declined - with climate change as a possible driver. Different aspects of local weather conditions can have substantial effects on bumble bees’ ability to forage. Here we made 501 observations of bumblebee workers on bramble flowers (Rubus fruticosus) to explore how the characteristic sizes of foragers active and their individual rate of movement between flowers were correlated with aspects of weather. Firstly, we found that increased ambient temperature is correlated to reduced activity in larger workers. Moreover, while higher humidity was linked to an increase in smaller workers, an increase in cloud cover led their numbers to decrease. Visitation rate and temperature showed a significant negative relationship whereas no other weather aspect affected visitation rate significantly. Our results suggest that predicted rises in ambient temperatures will adversely affect bumble bee foraging, and particularly so for larger-bodied workers. We anticipate that this study can be used as a foundation for longer-term and more detailed studies on bumble bee foraging and colony performance. Such work is vital to identify management measures to mitigate pollinator declines and preserve food security.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Insect Behavior
Journal of Insect Behavior 生物-昆虫学
CiteScore
1.50
自引率
0.00%
发文量
16
审稿时长
6-12 weeks
期刊介绍: Journal of Insect Behavior offers peer-reviewed research articles and short critical reviews on all aspects of the behavior of insects and other terrestrial arthropods such as spiders, centipedes, millipedes, and isopods. An internationally renowned editorial board discusses technological innovations and new developments in the field, emphasizing topics such as behavioral ecology, motor patterns and recognition, and genetic determinants.
期刊最新文献
Intraguild Predation or Spatial Separation? The efficacy and Interactions of Two Natural Enemy Species for the Biological Control of Pear Psyllid (Cacopsylla pyri) Using an Agent-Based Model to Explore the Effectiveness of Strategies Used by Ants to Mitigate the Spread of the Fungus Ophiocordyceps camponoti-rufipedis Altered Heat-Avoidance Behavior Following Damage to the Extended Architecture of Mexican Jumping Bean Moth Larvae (Cydia saltitans) Diamesa mendotae (Diptera: Chironomidae) Demonstrate Predictable Behavior Patterns Associated with Aging and Mortality Death Feigning in Larvae of Scorpionflies (Mecoptera: Panorpidae): Frequency and Postural Changes Based on Larval Instars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1