Robert J. G. Cockroft, W. Richard Jenkins, Anthony G. Irwin, Steve Norman, Kevin C. Brown
{"title":"幻影蠓在英国的出现时间和毒性","authors":"Robert J. G. Cockroft, W. Richard Jenkins, Anthony G. Irwin, Steve Norman, Kevin C. Brown","doi":"10.5194/we-22-101-2022","DOIUrl":null,"url":null,"abstract":"Phantom midges, <i>Chaoborus</i> spp. (Diptera: Chaoboridae), are an\nimportant taxon in environmental risk assessment of plant protection products due to the sensitivity of their larvae to insecticides. To aid\nmodelling of population responses to xenobiotic exposure, information on\nemergence timing and voltinism is needed, but definitive evidence to support\nthese parameters is lacking in the literature. We investigated emergence\ntiming of overwintering <i>Chaoborus</i> larvae and the number of life cycles occurring per year in two separate, mesh-enclosed outdoor microcosm experiments in the spring and summer of 2017.Emergence from overwintering larvae of a population of predominantly <i>C. obscuripes</i> (99.68 %) commenced on 13 April and peaked on 2 May. The majority of emergence was completed by 3 June. Emergence success ranged from 51.4 % to 66.2 %, indicating that for overwintered <i>C. obscuripes</i> larvae, adults emerged contemporaneously in spring, rather than sporadically over the course of spring and summer.A population of <i>C. crystallinus</i> larvae produced up to four discrete generations over the spring and summer months (i.e. were confirmed to be multivoltine), with life cycle durations (egg-to-egg) ranging from 14 to 56 d. The differences in life cycle strategy observed in this study have implications for assessment of the capacity of populations of <i>Chaoborus</i> spp. to recover if there are localised impacts due to insecticide exposure or other stressors.","PeriodicalId":54320,"journal":{"name":"Web Ecology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence timing and voltinism of phantom midges, Chaoborus spp., in the UK\",\"authors\":\"Robert J. G. Cockroft, W. Richard Jenkins, Anthony G. Irwin, Steve Norman, Kevin C. Brown\",\"doi\":\"10.5194/we-22-101-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phantom midges, <i>Chaoborus</i> spp. (Diptera: Chaoboridae), are an\\nimportant taxon in environmental risk assessment of plant protection products due to the sensitivity of their larvae to insecticides. To aid\\nmodelling of population responses to xenobiotic exposure, information on\\nemergence timing and voltinism is needed, but definitive evidence to support\\nthese parameters is lacking in the literature. We investigated emergence\\ntiming of overwintering <i>Chaoborus</i> larvae and the number of life cycles occurring per year in two separate, mesh-enclosed outdoor microcosm experiments in the spring and summer of 2017.Emergence from overwintering larvae of a population of predominantly <i>C. obscuripes</i> (99.68 %) commenced on 13 April and peaked on 2 May. The majority of emergence was completed by 3 June. Emergence success ranged from 51.4 % to 66.2 %, indicating that for overwintered <i>C. obscuripes</i> larvae, adults emerged contemporaneously in spring, rather than sporadically over the course of spring and summer.A population of <i>C. crystallinus</i> larvae produced up to four discrete generations over the spring and summer months (i.e. were confirmed to be multivoltine), with life cycle durations (egg-to-egg) ranging from 14 to 56 d. The differences in life cycle strategy observed in this study have implications for assessment of the capacity of populations of <i>Chaoborus</i> spp. to recover if there are localised impacts due to insecticide exposure or other stressors.\",\"PeriodicalId\":54320,\"journal\":{\"name\":\"Web Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.5194/we-22-101-2022\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.5194/we-22-101-2022","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Emergence timing and voltinism of phantom midges, Chaoborus spp., in the UK
Phantom midges, Chaoborus spp. (Diptera: Chaoboridae), are an
important taxon in environmental risk assessment of plant protection products due to the sensitivity of their larvae to insecticides. To aid
modelling of population responses to xenobiotic exposure, information on
emergence timing and voltinism is needed, but definitive evidence to support
these parameters is lacking in the literature. We investigated emergence
timing of overwintering Chaoborus larvae and the number of life cycles occurring per year in two separate, mesh-enclosed outdoor microcosm experiments in the spring and summer of 2017.Emergence from overwintering larvae of a population of predominantly C. obscuripes (99.68 %) commenced on 13 April and peaked on 2 May. The majority of emergence was completed by 3 June. Emergence success ranged from 51.4 % to 66.2 %, indicating that for overwintered C. obscuripes larvae, adults emerged contemporaneously in spring, rather than sporadically over the course of spring and summer.A population of C. crystallinus larvae produced up to four discrete generations over the spring and summer months (i.e. were confirmed to be multivoltine), with life cycle durations (egg-to-egg) ranging from 14 to 56 d. The differences in life cycle strategy observed in this study have implications for assessment of the capacity of populations of Chaoborus spp. to recover if there are localised impacts due to insecticide exposure or other stressors.
Web EcologyAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
4.60
自引率
0.00%
发文量
6
审稿时长
17 weeks
期刊介绍:
Web Ecology (WE) is an open-access journal issued by the European Ecological Federation (EEF) representing the ecological societies within Europe and associated members. Its special value is to serve as a publication forum for national ecological societies that do not maintain their own society journal. Web Ecology publishes papers from all fields of ecology without any geographic restriction. It is a forum to communicate results of experimental, theoretical, and descriptive studies of general interest to an international audience. Original contributions, short communications, and reviews on ecological research on all kinds of organisms and ecosystems are welcome as well as papers that express emerging ideas and concepts with a sound scientific background.