三维微结构的自动表征和分类:在钛三维变形孪晶网络中的应用

IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Advances Pub Date : 2023-09-19 DOI:10.1016/j.mtadv.2023.100425
H.T. Vo, P. Pinney, M.M. Schneider, M. Arul Kumar, R.J. McCabe, C.N. Tomé, L. Capolungo
{"title":"三维微结构的自动表征和分类:在钛三维变形孪晶网络中的应用","authors":"H.T. Vo, P. Pinney, M.M. Schneider, M. Arul Kumar, R.J. McCabe, C.N. Tomé, L. Capolungo","doi":"10.1016/j.mtadv.2023.100425","DOIUrl":null,"url":null,"abstract":"<p>The advent of techniques enabling three-dimensional (3D) analysis of objects, defects, and fields has been key to discoveries and paradigm shifts in molecular biology, astrophysics, medicine, quantum physics, etc. In materials science, the 3D nature of materials microstructures remains largely hidden; leading to a fragmented understanding of microstructure-property linkages. Current tools cannot characterize large volumes of 3D microstructures at fine resolution. To this end, this study introduces a graph-theory-based framework to automatically extract 3D microstructures and statistics of electron-backscatter diffraction datasets. Further, leveraging network science, the study introduces a new approach to classify and compare microstructures; the keystone to materials taxonomy. The significance of this tool is demonstrated by studying deformation twin structures in Titanium. The study reveals extraordinarily complex and tortuous twin networks never observed via traditional two-dimensional analysis. This changes our perception of the ability of metals to withstand severe microstructure changes without failing.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"196 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated characterization and classification of 3D microstructures: an application to 3D deformation twin networks in titanium\",\"authors\":\"H.T. Vo, P. Pinney, M.M. Schneider, M. Arul Kumar, R.J. McCabe, C.N. Tomé, L. Capolungo\",\"doi\":\"10.1016/j.mtadv.2023.100425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The advent of techniques enabling three-dimensional (3D) analysis of objects, defects, and fields has been key to discoveries and paradigm shifts in molecular biology, astrophysics, medicine, quantum physics, etc. In materials science, the 3D nature of materials microstructures remains largely hidden; leading to a fragmented understanding of microstructure-property linkages. Current tools cannot characterize large volumes of 3D microstructures at fine resolution. To this end, this study introduces a graph-theory-based framework to automatically extract 3D microstructures and statistics of electron-backscatter diffraction datasets. Further, leveraging network science, the study introduces a new approach to classify and compare microstructures; the keystone to materials taxonomy. The significance of this tool is demonstrated by studying deformation twin structures in Titanium. The study reveals extraordinarily complex and tortuous twin networks never observed via traditional two-dimensional analysis. This changes our perception of the ability of metals to withstand severe microstructure changes without failing.</p>\",\"PeriodicalId\":48495,\"journal\":{\"name\":\"Materials Today Advances\",\"volume\":\"196 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtadv.2023.100425\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2023.100425","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对物体、缺陷和领域进行三维(3D)分析的技术的出现,是分子生物学、天体物理学、医学、量子物理学等领域发现和范式转变的关键。在材料科学中,材料微观结构的三维性质在很大程度上仍然是隐藏的;导致对微观结构-性质联系的零碎理解。目前的工具不能以精细的分辨率表征大量的3D微结构。为此,本研究引入了一种基于图论的框架来自动提取电子背散射衍射数据集的三维微观结构和统计信息。此外,利用网络科学,该研究引入了一种新的方法来分类和比较微观结构;材料分类学的基石。通过对钛变形孪晶结构的研究,证明了该工具的意义。这项研究揭示了通过传统的二维分析从未观察到的异常复杂和曲折的双胞胎网络。这改变了我们对金属承受严重微观结构变化而不失败的能力的看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated characterization and classification of 3D microstructures: an application to 3D deformation twin networks in titanium

The advent of techniques enabling three-dimensional (3D) analysis of objects, defects, and fields has been key to discoveries and paradigm shifts in molecular biology, astrophysics, medicine, quantum physics, etc. In materials science, the 3D nature of materials microstructures remains largely hidden; leading to a fragmented understanding of microstructure-property linkages. Current tools cannot characterize large volumes of 3D microstructures at fine resolution. To this end, this study introduces a graph-theory-based framework to automatically extract 3D microstructures and statistics of electron-backscatter diffraction datasets. Further, leveraging network science, the study introduces a new approach to classify and compare microstructures; the keystone to materials taxonomy. The significance of this tool is demonstrated by studying deformation twin structures in Titanium. The study reveals extraordinarily complex and tortuous twin networks never observed via traditional two-dimensional analysis. This changes our perception of the ability of metals to withstand severe microstructure changes without failing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Advances
Materials Today Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.30
自引率
2.00%
发文量
116
审稿时长
32 days
期刊介绍: Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.
期刊最新文献
Not only a matter of disorder in I-WP minimal surface-based photonic networks: Diffusive structural color in Sternotomis amabilis longhorn beetles Magnetic bilayer qubits: A bipartite quantum system Unraveling the role of relaxation and rejuvenation on the structure and deformation behavior of the Zr-based bulk metallic glass Vit105 Acoustic tweezer-driven assembly and anti-cancer property of microporous magnesium gallate Nanostructured proton-exchange membranes from self-cross-linking perfluoroalkyl-free block-co-polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1