等竖向荷载作用下层状土桩筏基础性能的Plaxis 3D优化

4区 材料科学 Q2 Engineering Advances in Materials Science and Engineering Pub Date : 2023-11-20 DOI:10.1155/2023/6693876
Biya Degefu Teji, Argaw Asha Ashango
{"title":"等竖向荷载作用下层状土桩筏基础性能的Plaxis 3D优化","authors":"Biya Degefu Teji, Argaw Asha Ashango","doi":"10.1155/2023/6693876","DOIUrl":null,"url":null,"abstract":"Piled raft foundations are composite foundations that combine piles and raft to support civil engineering structure and to reduce the settlement. The data were obtained from Addis Ababa, Ethiopia. In this study, the effects of raft thickness, number of piles, pile length, spacing of piles, and pile diameter on the response of piled-raft foundations were investigated using the finite element-based program Plaxis 3D for layered soils (medium to very stiff high plastic silty clay and medium to very dense silty sand soil) subjected to uniform vertical loading. The results showed that increasing the thickness of the raft from 0.7 m to 1.7 m reduced the differential settlement by 78.21% when there were 16 piles. However, the maximum settlement also increased by 2.81%. Increasing the number of piles from 4 to 16 reduced the maximum settlement by 22.09% for a pile spacing of 4D. Moreover, increasing the pile length from 9 m to 15 m contributed to a 19.49% reduction in the total settlement for a pile spacing of 5D. Therefore, the current study provides a useful framework for analyzing and designing large piled-raft foundations.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Optimization of Piled Raft Foundations in Layered Soil under Uniform Vertical Loading Using Plaxis 3D\",\"authors\":\"Biya Degefu Teji, Argaw Asha Ashango\",\"doi\":\"10.1155/2023/6693876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piled raft foundations are composite foundations that combine piles and raft to support civil engineering structure and to reduce the settlement. The data were obtained from Addis Ababa, Ethiopia. In this study, the effects of raft thickness, number of piles, pile length, spacing of piles, and pile diameter on the response of piled-raft foundations were investigated using the finite element-based program Plaxis 3D for layered soils (medium to very stiff high plastic silty clay and medium to very dense silty sand soil) subjected to uniform vertical loading. The results showed that increasing the thickness of the raft from 0.7 m to 1.7 m reduced the differential settlement by 78.21% when there were 16 piles. However, the maximum settlement also increased by 2.81%. Increasing the number of piles from 4 to 16 reduced the maximum settlement by 22.09% for a pile spacing of 4D. Moreover, increasing the pile length from 9 m to 15 m contributed to a 19.49% reduction in the total settlement for a pile spacing of 5D. Therefore, the current study provides a useful framework for analyzing and designing large piled-raft foundations.\",\"PeriodicalId\":7345,\"journal\":{\"name\":\"Advances in Materials Science and Engineering\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6693876\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2023/6693876","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

桩筏基础是将桩和筏结合在一起,用以支撑土木工程结构,减少沉降的复合基础。数据来自埃塞俄比亚的亚的斯亚贝巴。本文采用有限元软件Plaxis 3D,研究了筏板厚度、桩数、桩长、桩间距和桩径对桩筏基础响应的影响,并对受均匀竖向荷载作用的层状土(中~极硬高塑性粉质粘土和中~极密粉质砂土)进行了分析。结果表明:当筏板厚度由0.7 m增加到1.7 m时,桩数为16桩时,沉降差值降低78.21%;最大沉降也增加了2.81%。桩间距为4D时,桩数由4桩增加到16桩,最大沉降减少22.09%。当桩距为5D时,桩长由9 m增加到15 m,总沉降减少19.49%。因此,本研究为分析和设计大型桩筏基础提供了一个有用的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Optimization of Piled Raft Foundations in Layered Soil under Uniform Vertical Loading Using Plaxis 3D
Piled raft foundations are composite foundations that combine piles and raft to support civil engineering structure and to reduce the settlement. The data were obtained from Addis Ababa, Ethiopia. In this study, the effects of raft thickness, number of piles, pile length, spacing of piles, and pile diameter on the response of piled-raft foundations were investigated using the finite element-based program Plaxis 3D for layered soils (medium to very stiff high plastic silty clay and medium to very dense silty sand soil) subjected to uniform vertical loading. The results showed that increasing the thickness of the raft from 0.7 m to 1.7 m reduced the differential settlement by 78.21% when there were 16 piles. However, the maximum settlement also increased by 2.81%. Increasing the number of piles from 4 to 16 reduced the maximum settlement by 22.09% for a pile spacing of 4D. Moreover, increasing the pile length from 9 m to 15 m contributed to a 19.49% reduction in the total settlement for a pile spacing of 5D. Therefore, the current study provides a useful framework for analyzing and designing large piled-raft foundations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Materials Science and Engineering
Advances in Materials Science and Engineering Materials Science-General Materials Science
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to: -Chemistry and fundamental properties of matter -Material synthesis, fabrication, manufacture, and processing -Magnetic, electrical, thermal, and optical properties of materials -Strength, durability, and mechanical behaviour of materials -Consideration of materials in structural design, modelling, and engineering -Green and renewable materials, and consideration of materials’ life cycles -Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)
期刊最新文献
Evaluating Sisal Fiber-Reinforced Gypsum Composites for Water Absorption and Mechanical Performance Extraction and Characterization of Cellulose from Coffee Husk and Brewery’s Spent Grain Fibers Using Alkali-Hydrogen Peroxide Treatment Method Multiobjective Optimization of Hard Turning on OHNS Steel Using Desirability and TOPSIS Approaches Enhancing Communication Reliability: Designing Microwave Links for Bahir Dar-Woretta Connectivity Breaking Boundaries with Ceramic Matrix Composites: A Comprehensive Overview of Materials, Manufacturing Techniques, Transformative Applications, Recent Advancements, and Future Prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1