用于 5G NR 多用户 MIMO 的神经接收器

Sebastian Cammerer, Fayçal Aït Aoudia, Jakob Hoydis, Andreas Oeldemann, Andreas Roessler, Timo Mayer, Alexander Keller
{"title":"用于 5G NR 多用户 MIMO 的神经接收器","authors":"Sebastian Cammerer, Fayçal Aït Aoudia, Jakob Hoydis, Andreas Oeldemann, Andreas Roessler, Timo Mayer, Alexander Keller","doi":"arxiv-2312.02601","DOIUrl":null,"url":null,"abstract":"We introduce a neural network (NN)-based multiuser multiple-input\nmultiple-output (MU-MIMO) receiver with 5G New Radio (5G NR) physical uplink\nshared channel (PUSCH) compatibility. The NN architecture is based on\nconvolution layers to exploit the time and frequency correlation of the channel\nand a graph neural network (GNN) to handle multiple users. The proposed\narchitecture adapts to an arbitrary number of sub-carriers and supports a\nvarying number of multiple-input multiple-output (MIMO) layers and users\nwithout the need for any retraining. The receiver operates on an entire 5G NR\nslot, i.e., processes the entire received orthogonal frequency division\nmultiplexing (OFDM) time-frequency resource grid by jointly performing channel\nestimation, equalization, and demapping. The proposed architecture operates\nless than 1 dB away from a baseline using linear minimum mean square error\n(LMMSE) channel estimation with K-best detection but benefits from a\nsignificantly lower computational complexity. We show the importance of a\ncarefully designed training process such that the trained receiver is universal\nfor a wide range of different unseen channel conditions. Finally, we\ndemonstrate the results of a hardware-in-the-loop verification based on 3GPP\ncompliant conformance test scenarios.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Neural Receiver for 5G NR Multi-user MIMO\",\"authors\":\"Sebastian Cammerer, Fayçal Aït Aoudia, Jakob Hoydis, Andreas Oeldemann, Andreas Roessler, Timo Mayer, Alexander Keller\",\"doi\":\"arxiv-2312.02601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a neural network (NN)-based multiuser multiple-input\\nmultiple-output (MU-MIMO) receiver with 5G New Radio (5G NR) physical uplink\\nshared channel (PUSCH) compatibility. The NN architecture is based on\\nconvolution layers to exploit the time and frequency correlation of the channel\\nand a graph neural network (GNN) to handle multiple users. The proposed\\narchitecture adapts to an arbitrary number of sub-carriers and supports a\\nvarying number of multiple-input multiple-output (MIMO) layers and users\\nwithout the need for any retraining. The receiver operates on an entire 5G NR\\nslot, i.e., processes the entire received orthogonal frequency division\\nmultiplexing (OFDM) time-frequency resource grid by jointly performing channel\\nestimation, equalization, and demapping. The proposed architecture operates\\nless than 1 dB away from a baseline using linear minimum mean square error\\n(LMMSE) channel estimation with K-best detection but benefits from a\\nsignificantly lower computational complexity. We show the importance of a\\ncarefully designed training process such that the trained receiver is universal\\nfor a wide range of different unseen channel conditions. Finally, we\\ndemonstrate the results of a hardware-in-the-loop verification based on 3GPP\\ncompliant conformance test scenarios.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种基于神经网络(NN)的多用户多输入多输出(MU-MIMO)接收器,它兼容 5G 新无线电(5G NR)物理上行链路共享信道(PUSCH)。神经网络架构基于利用信道的时间和频率相关性的卷积层和处理多用户的图神经网络(GNN)。所提出的架构可适应任意数量的子载波,并支持不同数量的多输入多输出(MIMO)层和用户,无需任何再训练。接收器在整个 5G NRslot 上运行,即通过联合执行信道估计、均衡和解映射来处理整个接收到的正交频分复用(OFDM)时频资源网格。所提出的架构与使用线性最小均方误差(LMMSE)信道估计和 K-best 检测的基线相比,运行速度相差不到 1 dB,但计算复杂度却大大降低。我们展示了精心设计训练过程的重要性,这样训练出来的接收器就能普遍适用于各种不同的未知信道条件。最后,我们展示了基于符合 3GPP 标准的一致性测试场景的硬件在环验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Neural Receiver for 5G NR Multi-user MIMO
We introduce a neural network (NN)-based multiuser multiple-input multiple-output (MU-MIMO) receiver with 5G New Radio (5G NR) physical uplink shared channel (PUSCH) compatibility. The NN architecture is based on convolution layers to exploit the time and frequency correlation of the channel and a graph neural network (GNN) to handle multiple users. The proposed architecture adapts to an arbitrary number of sub-carriers and supports a varying number of multiple-input multiple-output (MIMO) layers and users without the need for any retraining. The receiver operates on an entire 5G NR slot, i.e., processes the entire received orthogonal frequency division multiplexing (OFDM) time-frequency resource grid by jointly performing channel estimation, equalization, and demapping. The proposed architecture operates less than 1 dB away from a baseline using linear minimum mean square error (LMMSE) channel estimation with K-best detection but benefits from a significantly lower computational complexity. We show the importance of a carefully designed training process such that the trained receiver is universal for a wide range of different unseen channel conditions. Finally, we demonstrate the results of a hardware-in-the-loop verification based on 3GPP compliant conformance test scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1