用于信道估计的变异自动编码器:真实世界的测量启示

Michael Baur, Benedikt Böck, Nurettin Turan, Wolfgang Utschick
{"title":"用于信道估计的变异自动编码器:真实世界的测量启示","authors":"Michael Baur, Benedikt Böck, Nurettin Turan, Wolfgang Utschick","doi":"arxiv-2312.03450","DOIUrl":null,"url":null,"abstract":"This work utilizes a variational autoencoder for channel estimation and\nevaluates it on real-world measurements. The estimator is trained solely on\nnoisy channel observations and parameterizes an approximation to the mean\nsquared error-optimal estimator by learning observation-dependent conditional\nfirst and second moments. The proposed estimator significantly outperforms\nrelated state-of-the-art estimators on real-world measurements. We investigate\nthe effect of pre-training with synthetic data and find that the proposed\nestimator exhibits comparable results to the related estimators if trained on\nsynthetic data and evaluated on the measurement data. Furthermore, pre-training\non synthetic data also helps to reduce the required measurement training\ndataset size.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational Autoencoder for Channel Estimation: Real-World Measurement Insights\",\"authors\":\"Michael Baur, Benedikt Böck, Nurettin Turan, Wolfgang Utschick\",\"doi\":\"arxiv-2312.03450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work utilizes a variational autoencoder for channel estimation and\\nevaluates it on real-world measurements. The estimator is trained solely on\\nnoisy channel observations and parameterizes an approximation to the mean\\nsquared error-optimal estimator by learning observation-dependent conditional\\nfirst and second moments. The proposed estimator significantly outperforms\\nrelated state-of-the-art estimators on real-world measurements. We investigate\\nthe effect of pre-training with synthetic data and find that the proposed\\nestimator exhibits comparable results to the related estimators if trained on\\nsynthetic data and evaluated on the measurement data. Furthermore, pre-training\\non synthetic data also helps to reduce the required measurement training\\ndataset size.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.03450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作利用变异自动编码器进行信道估计,并在实际测量中对其进行评估。该估计器完全根据噪声信道观测数据进行训练,并通过学习与观测相关的条件第一矩和第二矩,对均方误差最优估计器的近似值进行参数化。在实际测量中,所提出的估计器明显优于相关的最先进估计器。我们研究了使用合成数据进行预训练的效果,发现如果在合成数据上进行训练并在测量数据上进行评估,所提出的估计器与相关估计器的结果相当。此外,在合成数据上进行预训练还有助于减少所需的测量训练数据集大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variational Autoencoder for Channel Estimation: Real-World Measurement Insights
This work utilizes a variational autoencoder for channel estimation and evaluates it on real-world measurements. The estimator is trained solely on noisy channel observations and parameterizes an approximation to the mean squared error-optimal estimator by learning observation-dependent conditional first and second moments. The proposed estimator significantly outperforms related state-of-the-art estimators on real-world measurements. We investigate the effect of pre-training with synthetic data and find that the proposed estimator exhibits comparable results to the related estimators if trained on synthetic data and evaluated on the measurement data. Furthermore, pre-training on synthetic data also helps to reduce the required measurement training dataset size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1