利用镧系元素降频层进行空间太阳光谱管理

Q2 Engineering Optical Materials: X Pub Date : 2023-12-05 DOI:10.1016/j.omx.2023.100280
Sandra F.H. Correia , Lianshe Fu , Paulo S. André , Rute A.S. Ferreira
{"title":"利用镧系元素降频层进行空间太阳光谱管理","authors":"Sandra F.H. Correia ,&nbsp;Lianshe Fu ,&nbsp;Paulo S. André ,&nbsp;Rute A.S. Ferreira","doi":"10.1016/j.omx.2023.100280","DOIUrl":null,"url":null,"abstract":"<div><p>Photovoltaic (PV) cells are still the most used energy generation devices for aerospace applications. Although multijunction solar cells represent the standard commercial technology for powering spacecraft, spacecraft companies are still using Si-based PV cells to decrease the cost of satellites at the expense of efficiency and energy generation losses. One of the limitations on solar energy conversion is the mismatch between the solar spectrum and the absorption of the PV technology in use. Thus, strategies to overcome this have been proposed, namely the use of luminescent downshifting layers (DSLs) which are very promising to shape the incident sunlight. In this sense, downshifting materials with absorption in the UV/blue spectral region have been privileged considering the solar spectrum in space environments (AM0 solar spectrum), in which the UV component is larger than that on Earth surface (AM1.5 solar spectrum). Here, we propose the use of Eu<sup>3+</sup>-doped di-ureasil organic-inorganic hybrid materials as DSLs to be used on large area Si-based PV cells (∼0.1 m<sup>2</sup>) for space applications. Electrical measurements on the PV cell, done before and after the deposition of the DSLs, confirm the positive effect of the coatings on the device performance, with a relative increase on the generated electrical power of ∼2.6 %. Here, we report, for the first time, a DSL specifically designed for space applications and with the largest active area reported so far.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147823000542/pdfft?md5=274450eadd04003cee93049244f39b8b&pid=1-s2.0-S2590147823000542-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Solar spectral management in space using lanthanide-based downshifting layers\",\"authors\":\"Sandra F.H. Correia ,&nbsp;Lianshe Fu ,&nbsp;Paulo S. André ,&nbsp;Rute A.S. Ferreira\",\"doi\":\"10.1016/j.omx.2023.100280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photovoltaic (PV) cells are still the most used energy generation devices for aerospace applications. Although multijunction solar cells represent the standard commercial technology for powering spacecraft, spacecraft companies are still using Si-based PV cells to decrease the cost of satellites at the expense of efficiency and energy generation losses. One of the limitations on solar energy conversion is the mismatch between the solar spectrum and the absorption of the PV technology in use. Thus, strategies to overcome this have been proposed, namely the use of luminescent downshifting layers (DSLs) which are very promising to shape the incident sunlight. In this sense, downshifting materials with absorption in the UV/blue spectral region have been privileged considering the solar spectrum in space environments (AM0 solar spectrum), in which the UV component is larger than that on Earth surface (AM1.5 solar spectrum). Here, we propose the use of Eu<sup>3+</sup>-doped di-ureasil organic-inorganic hybrid materials as DSLs to be used on large area Si-based PV cells (∼0.1 m<sup>2</sup>) for space applications. Electrical measurements on the PV cell, done before and after the deposition of the DSLs, confirm the positive effect of the coatings on the device performance, with a relative increase on the generated electrical power of ∼2.6 %. Here, we report, for the first time, a DSL specifically designed for space applications and with the largest active area reported so far.</p></div>\",\"PeriodicalId\":52192,\"journal\":{\"name\":\"Optical Materials: X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590147823000542/pdfft?md5=274450eadd04003cee93049244f39b8b&pid=1-s2.0-S2590147823000542-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590147823000542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590147823000542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

光伏(PV)电池仍然是航空航天应用中使用最多的发电装置。尽管多接面太阳能电池代表了为航天器供电的标准商业技术,但航天器公司仍在使用硅基光伏电池,以降低卫星成本,但却牺牲了效率和发电损耗。太阳能转换的限制之一是太阳光谱与所使用的光伏技术的吸收能力不匹配。因此,人们提出了克服这一问题的策略,即使用发光下移层(DSL),它在塑造入射太阳光方面大有可为。从这个意义上说,考虑到太空环境中的太阳光谱(AM0 太阳光谱),具有紫外线/蓝光吸收光谱区域的下移材料已被优先考虑,其中紫外线成分大于地球表面的太阳光谱(AM1.5 太阳光谱)。在此,我们建议使用掺杂 Eu3+ 的二金刚石有机-无机混合材料作为 DSL,用于大面积硅基光伏电池(∼0.1 平方米)的空间应用。在沉积 DSL 之前和之后对光伏电池进行的电学测量证实了涂层对设备性能的积极影响,产生的电功率相对增加了 2.6%。在此,我们首次报告了一种专为太空应用而设计的 DSL,它具有迄今为止报告的最大活性面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solar spectral management in space using lanthanide-based downshifting layers

Photovoltaic (PV) cells are still the most used energy generation devices for aerospace applications. Although multijunction solar cells represent the standard commercial technology for powering spacecraft, spacecraft companies are still using Si-based PV cells to decrease the cost of satellites at the expense of efficiency and energy generation losses. One of the limitations on solar energy conversion is the mismatch between the solar spectrum and the absorption of the PV technology in use. Thus, strategies to overcome this have been proposed, namely the use of luminescent downshifting layers (DSLs) which are very promising to shape the incident sunlight. In this sense, downshifting materials with absorption in the UV/blue spectral region have been privileged considering the solar spectrum in space environments (AM0 solar spectrum), in which the UV component is larger than that on Earth surface (AM1.5 solar spectrum). Here, we propose the use of Eu3+-doped di-ureasil organic-inorganic hybrid materials as DSLs to be used on large area Si-based PV cells (∼0.1 m2) for space applications. Electrical measurements on the PV cell, done before and after the deposition of the DSLs, confirm the positive effect of the coatings on the device performance, with a relative increase on the generated electrical power of ∼2.6 %. Here, we report, for the first time, a DSL specifically designed for space applications and with the largest active area reported so far.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Materials: X
Optical Materials: X Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
73
审稿时长
91 days
期刊最新文献
Study of the applicability of ACdSe (A – Co, Ni) thin films as catalysts for heavy metal capture Low temperature recombination luminescence of Mg3Y2Ge3O12:Tb3+ The connection between the accumulation of structural defects caused by proton irradiation and the destruction of the near-surface layer of Li4SiO4 – Li2TiO3 ceramics Latent fingerprint detection and identification using yellow-emitting YOF:Pr3+ nanophosphor Threshold phenomena in photoluminescence of upconversion micro- and nanophosphors containing Er3+ and Yb3+ ions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1