嵌入在二维还原氧化石墨烯(RGO)层上的 Fe3O4@FeNi3 球形介孔纳米粒子的原位组装,作为电磁干扰污染的保护屏障

IF 7.5 Q1 CHEMISTRY, PHYSICAL Applied Surface Science Advances Pub Date : 2023-12-08 DOI:10.1016/j.apsadv.2023.100545
Ritu Chahal , Yamini Dalal , Sajjan Dahiya , Rajesh Punia , A.S. Maan , Kuldeep Singh , Anil Ohlan
{"title":"嵌入在二维还原氧化石墨烯(RGO)层上的 Fe3O4@FeNi3 球形介孔纳米粒子的原位组装,作为电磁干扰污染的保护屏障","authors":"Ritu Chahal ,&nbsp;Yamini Dalal ,&nbsp;Sajjan Dahiya ,&nbsp;Rajesh Punia ,&nbsp;A.S. Maan ,&nbsp;Kuldeep Singh ,&nbsp;Anil Ohlan","doi":"10.1016/j.apsadv.2023.100545","DOIUrl":null,"url":null,"abstract":"<div><p>Electromagnetic interference (EMI) is a major issue due to the increased use of electronic devices operating in the gigahertz frequency range. Consequently, to reduce electromagnetic pollution, materials with considerable magnetic and dielectric loss can be used for the attenuation of electromagnetic waves. In this paper, Fe<sub>3</sub>O<sub>4</sub> FeNi<sub>3</sub> spherical mesoporous nanoparticles embedded on reduced graphene oxide (RGO) layers have been synthesized using the hydrothermal reduction method. The specific surface area of Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub>/RGO nanocomposite was 67.4 m<sup>2</sup>/g with a pore size diameter of 3.4 nm (i.e., mesoporous range). Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub>/RGO nanocomposites show an enhanced absorption dominant shielding effectiveness (SE) value of 46.49 dB as compared to its binary counterpart Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub>, having SE value of 25.21 dB. The synthesized Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub>/RGO nanocomposite of thickness 1.42 mm has SE<sub>R</sub> of ∼10.32 dB and SE<sub>A</sub> of ∼36.15 dB at 15 GHz. Furthermore, it is observed that shielding efficiency increases with increasing reduced graphene oxide (RGO) content in Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub>, which is owing to an excellent interconnected network between RGO and Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub>. The RGO sheets can create a comprehensive conductive network for the distribution of charges and can enhance dielectric loss because of the layered structure, greater specific surface area and large aspect ratio. Additionally, the mesoporous Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub> hybrid embellished on the surface of RGO may be employed as a multi-pole polarisation centre, enhancing the electronic and space charge polarization of the composites, which is helpful for strong EM wave absorption. It was believed that these nanocomposites would pave the way for the development of RGO-based mesoporous nanocomposites as broadband, lightweight and effective shielding material for practical applications.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523923001794/pdfft?md5=79976c15753175f3efa2e9d29051322e&pid=1-s2.0-S2666523923001794-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Insitu assembly of Fe3O4@FeNi3 spherical mesoporous nanoparticles embedded on 2D reduced graphene oxide (RGO) layers as protective barrier for EMI pollution\",\"authors\":\"Ritu Chahal ,&nbsp;Yamini Dalal ,&nbsp;Sajjan Dahiya ,&nbsp;Rajesh Punia ,&nbsp;A.S. Maan ,&nbsp;Kuldeep Singh ,&nbsp;Anil Ohlan\",\"doi\":\"10.1016/j.apsadv.2023.100545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electromagnetic interference (EMI) is a major issue due to the increased use of electronic devices operating in the gigahertz frequency range. Consequently, to reduce electromagnetic pollution, materials with considerable magnetic and dielectric loss can be used for the attenuation of electromagnetic waves. In this paper, Fe<sub>3</sub>O<sub>4</sub> FeNi<sub>3</sub> spherical mesoporous nanoparticles embedded on reduced graphene oxide (RGO) layers have been synthesized using the hydrothermal reduction method. The specific surface area of Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub>/RGO nanocomposite was 67.4 m<sup>2</sup>/g with a pore size diameter of 3.4 nm (i.e., mesoporous range). Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub>/RGO nanocomposites show an enhanced absorption dominant shielding effectiveness (SE) value of 46.49 dB as compared to its binary counterpart Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub>, having SE value of 25.21 dB. The synthesized Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub>/RGO nanocomposite of thickness 1.42 mm has SE<sub>R</sub> of ∼10.32 dB and SE<sub>A</sub> of ∼36.15 dB at 15 GHz. Furthermore, it is observed that shielding efficiency increases with increasing reduced graphene oxide (RGO) content in Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub>, which is owing to an excellent interconnected network between RGO and Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub>. The RGO sheets can create a comprehensive conductive network for the distribution of charges and can enhance dielectric loss because of the layered structure, greater specific surface area and large aspect ratio. Additionally, the mesoporous Fe<sub>3</sub>O<sub>4</sub>@FeNi<sub>3</sub> hybrid embellished on the surface of RGO may be employed as a multi-pole polarisation centre, enhancing the electronic and space charge polarization of the composites, which is helpful for strong EM wave absorption. It was believed that these nanocomposites would pave the way for the development of RGO-based mesoporous nanocomposites as broadband, lightweight and effective shielding material for practical applications.</p></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666523923001794/pdfft?md5=79976c15753175f3efa2e9d29051322e&pid=1-s2.0-S2666523923001794-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523923001794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523923001794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于越来越多地使用千兆赫频率范围内的电子设备,电磁干扰(EMI)已成为一个重大问题。因此,为了减少电磁污染,可以使用具有相当大磁损耗和介电损耗的材料来衰减电磁波。本文采用水热还原法合成了嵌在还原氧化石墨烯(RGO)层上的 Fe3O4 FeNi3 球形介孔纳米粒子。Fe3O4@FeNi3/RGO 纳米复合材料的比表面积为 67.4 m2/g,孔径为 3.4 nm(即介孔范围)。与二元对应物 Fe3O4@FeNi3 相比,Fe3O4@FeNi3/RGO 纳米复合材料的吸收主导屏蔽效能(SE)值为 46.49 dB,而二元对应物 Fe3O4@FeNi3 的 SE 值为 25.21 dB。合成的厚度为 1.42 mm 的 Fe3O4@FeNi3/RGO 纳米复合材料在 15 GHz 时的 SER 值为 10.32 dB,SEA 值为 36.15 dB。此外,还观察到屏蔽效率随着 Fe3O4@FeNi3 中还原氧化石墨烯(RGO)含量的增加而提高,这归功于 RGO 与 Fe3O4@FeNi3 之间良好的互连网络。由于 RGO 片具有层状结构、更大的比表面积和更高的长宽比,因此可以为电荷分布创建一个全面的导电网络,并能提高介电损耗。此外,RGO 表面点缀的介孔 Fe3O4@FeNi3 杂化物可用作多极极化中心,增强复合材料的电子和空间电荷极化,从而有助于强电磁波吸收。相信这些纳米复合材料将为开发基于 RGO 的介孔纳米复合材料铺平道路,使其成为宽带、轻质和有效的屏蔽材料,并得到实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insitu assembly of Fe3O4@FeNi3 spherical mesoporous nanoparticles embedded on 2D reduced graphene oxide (RGO) layers as protective barrier for EMI pollution

Electromagnetic interference (EMI) is a major issue due to the increased use of electronic devices operating in the gigahertz frequency range. Consequently, to reduce electromagnetic pollution, materials with considerable magnetic and dielectric loss can be used for the attenuation of electromagnetic waves. In this paper, Fe3O4 FeNi3 spherical mesoporous nanoparticles embedded on reduced graphene oxide (RGO) layers have been synthesized using the hydrothermal reduction method. The specific surface area of Fe3O4@FeNi3/RGO nanocomposite was 67.4 m2/g with a pore size diameter of 3.4 nm (i.e., mesoporous range). Fe3O4@FeNi3/RGO nanocomposites show an enhanced absorption dominant shielding effectiveness (SE) value of 46.49 dB as compared to its binary counterpart Fe3O4@FeNi3, having SE value of 25.21 dB. The synthesized Fe3O4@FeNi3/RGO nanocomposite of thickness 1.42 mm has SER of ∼10.32 dB and SEA of ∼36.15 dB at 15 GHz. Furthermore, it is observed that shielding efficiency increases with increasing reduced graphene oxide (RGO) content in Fe3O4@FeNi3, which is owing to an excellent interconnected network between RGO and Fe3O4@FeNi3. The RGO sheets can create a comprehensive conductive network for the distribution of charges and can enhance dielectric loss because of the layered structure, greater specific surface area and large aspect ratio. Additionally, the mesoporous Fe3O4@FeNi3 hybrid embellished on the surface of RGO may be employed as a multi-pole polarisation centre, enhancing the electronic and space charge polarization of the composites, which is helpful for strong EM wave absorption. It was believed that these nanocomposites would pave the way for the development of RGO-based mesoporous nanocomposites as broadband, lightweight and effective shielding material for practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
期刊最新文献
Performance analysis of turning operation parameters empirically on Delrin Surface Engineered 2D Materials based Platforms for Advanced Technologies The essential synergy between experiments and theory in applied surface science Manufacturing and properties characterization of Ti patterned coatings for water electrolyzers by CSAM Exploring the role of edges in surface functionalization and stability of plasma-modified carbon materials: Experimental and DFT insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1