{"title":"用于训练文档图像分割模型的损失函数","authors":"A. I. Perminov, D. Yu. Turdakov, O. V. Belyaeva","doi":"10.1134/s0361768823070058","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This work is devoted to improving the quality of segmentation of images of various scientific papers and legal acts by neural network models by training them using modified loss functions that take into account special features of images of the appropriate subject domain. The analysis of existing loss functions is carried out, and new functions are proposed that work both with the coordinates of bounding boxes and use information about the pixels of the input image. To assess the quality, a neural network segmentation model with modified loss functions is trained, and a theoretical assessment is carried out using a simulation experiment showing the convergence rate and segmentation error. As a result of the study, rapidly converging loss functions are created that improve the quality of document image segmentation using additional information about the input data.</p>","PeriodicalId":54555,"journal":{"name":"Programming and Computer Software","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loss Function for Training Models of Segmentation of Document Images\",\"authors\":\"A. I. Perminov, D. Yu. Turdakov, O. V. Belyaeva\",\"doi\":\"10.1134/s0361768823070058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>This work is devoted to improving the quality of segmentation of images of various scientific papers and legal acts by neural network models by training them using modified loss functions that take into account special features of images of the appropriate subject domain. The analysis of existing loss functions is carried out, and new functions are proposed that work both with the coordinates of bounding boxes and use information about the pixels of the input image. To assess the quality, a neural network segmentation model with modified loss functions is trained, and a theoretical assessment is carried out using a simulation experiment showing the convergence rate and segmentation error. As a result of the study, rapidly converging loss functions are created that improve the quality of document image segmentation using additional information about the input data.</p>\",\"PeriodicalId\":54555,\"journal\":{\"name\":\"Programming and Computer Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programming and Computer Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1134/s0361768823070058\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming and Computer Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0361768823070058","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Loss Function for Training Models of Segmentation of Document Images
Abstract
This work is devoted to improving the quality of segmentation of images of various scientific papers and legal acts by neural network models by training them using modified loss functions that take into account special features of images of the appropriate subject domain. The analysis of existing loss functions is carried out, and new functions are proposed that work both with the coordinates of bounding boxes and use information about the pixels of the input image. To assess the quality, a neural network segmentation model with modified loss functions is trained, and a theoretical assessment is carried out using a simulation experiment showing the convergence rate and segmentation error. As a result of the study, rapidly converging loss functions are created that improve the quality of document image segmentation using additional information about the input data.
期刊介绍:
Programming and Computer Software is a peer reviewed journal devoted to problems in all areas of computer science: operating systems, compiler technology, software engineering, artificial intelligence, etc.