弱设计条件下的次椭圆扩散参数推断

Yuga Iguchi, Alexandros Beskos
{"title":"弱设计条件下的次椭圆扩散参数推断","authors":"Yuga Iguchi, Alexandros Beskos","doi":"arxiv-2312.04444","DOIUrl":null,"url":null,"abstract":"We address the problem of parameter estimation for degenerate diffusion\nprocesses defined via the solution of Stochastic Differential Equations (SDEs)\nwith diffusion matrix that is not full-rank. For this class of hypo-elliptic\ndiffusions recent works have proposed contrast estimators that are\nasymptotically normal, provided that the step-size in-between observations\n$\\Delta=\\Delta_n$ and their total number $n$ satisfy $n \\to \\infty$, $n\n\\Delta_n \\to \\infty$, $\\Delta_n \\to 0$, and additionally $\\Delta_n = o\n(n^{-1/2})$. This latter restriction places a requirement for a so-called\n`rapidly increasing experimental design'. In this paper, we overcome this\nlimitation and develop a general contrast estimator satisfying asymptotic\nnormality under the weaker design condition $\\Delta_n = o(n^{-1/p})$ for\ngeneral $p \\ge 2$. Such a result has been obtained for elliptic SDEs in the\nliterature, but its derivation in a hypo-elliptic setting is highly\nnon-trivial. We provide numerical results to illustrate the advantages of the\ndeveloped theory.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Inference for Hypo-Elliptic Diffusions under a Weak Design Condition\",\"authors\":\"Yuga Iguchi, Alexandros Beskos\",\"doi\":\"arxiv-2312.04444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of parameter estimation for degenerate diffusion\\nprocesses defined via the solution of Stochastic Differential Equations (SDEs)\\nwith diffusion matrix that is not full-rank. For this class of hypo-elliptic\\ndiffusions recent works have proposed contrast estimators that are\\nasymptotically normal, provided that the step-size in-between observations\\n$\\\\Delta=\\\\Delta_n$ and their total number $n$ satisfy $n \\\\to \\\\infty$, $n\\n\\\\Delta_n \\\\to \\\\infty$, $\\\\Delta_n \\\\to 0$, and additionally $\\\\Delta_n = o\\n(n^{-1/2})$. This latter restriction places a requirement for a so-called\\n`rapidly increasing experimental design'. In this paper, we overcome this\\nlimitation and develop a general contrast estimator satisfying asymptotic\\nnormality under the weaker design condition $\\\\Delta_n = o(n^{-1/p})$ for\\ngeneral $p \\\\ge 2$. Such a result has been obtained for elliptic SDEs in the\\nliterature, but its derivation in a hypo-elliptic setting is highly\\nnon-trivial. We provide numerical results to illustrate the advantages of the\\ndeveloped theory.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们要解决的问题是,通过求解扩散矩阵非全秩的随机微分方程(SDE)定义的退化扩散过程的参数估计问题。对于这类下椭圆扩散,最近的研究提出了渐近正态分布的对比度估计器,条件是观测值之间的步长$\Delta=\Delta_n$及其总数$n$满足$n \to \infty$,$n\Delta_n \to \infty$,$\Delta_n \to 0$,另外$\Delta_n = o(n^{-1/2})$。后一种限制对所谓的 "快速增长实验设计 "提出了要求。在本文中,我们克服了这一限制,开发出了一种在较弱的设计条件 $\Delta_n = o(n^{-1/p})$ 宽度一般为 $p\ge 2$ 下满足渐近正态性的一般对比度估计器。这样的结果在文献中已针对椭圆 SDE 得到,但在次椭圆环境中的推导却非常不容易。我们提供了数值结果来说明所发展理论的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter Inference for Hypo-Elliptic Diffusions under a Weak Design Condition
We address the problem of parameter estimation for degenerate diffusion processes defined via the solution of Stochastic Differential Equations (SDEs) with diffusion matrix that is not full-rank. For this class of hypo-elliptic diffusions recent works have proposed contrast estimators that are asymptotically normal, provided that the step-size in-between observations $\Delta=\Delta_n$ and their total number $n$ satisfy $n \to \infty$, $n \Delta_n \to \infty$, $\Delta_n \to 0$, and additionally $\Delta_n = o (n^{-1/2})$. This latter restriction places a requirement for a so-called `rapidly increasing experimental design'. In this paper, we overcome this limitation and develop a general contrast estimator satisfying asymptotic normality under the weaker design condition $\Delta_n = o(n^{-1/p})$ for general $p \ge 2$. Such a result has been obtained for elliptic SDEs in the literature, but its derivation in a hypo-elliptic setting is highly non-trivial. We provide numerical results to illustrate the advantages of the developed theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1