Zhiqing Ye, Ying Wei, Guangbo Zhang, Lifei Ge, Chenqian Wu, Yucheng Ren, Jixiu Wang, Xiuwen Xu, Jingwen Yang, Tianming Wang
{"title":"日本海参的昼夜节律调节:对时钟基因表达、光周期敏感性和神经激素信号传导的见解","authors":"Zhiqing Ye, Ying Wei, Guangbo Zhang, Lifei Ge, Chenqian Wu, Yucheng Ren, Jixiu Wang, Xiuwen Xu, Jingwen Yang, Tianming Wang","doi":"10.1016/j.cbpb.2023.110930","DOIUrl":null,"url":null,"abstract":"<div><p>Sea cucumber <span><em>Apostichopus japonicus</em></span><span> displays the typical circadian rhythms. This present study investigated the molecular regulation of clock genes, as well as monoamines and melatonin, in multiple tissues of </span><em>A. japonicus</em><span>, responding to the photoperiod. In order to determine their pivotal role in circadian rhythms, the crucial clock genes, namely </span><em>AjClock</em>, <em>AjArnt1</em>, <em>AjCry1</em>, and <em>AjTimeless</em>, were identified and a comprehensive analysis of their expressions across various tissues in adult <em>A. japonicus</em> was conducted, revealing the potential existence of central and peripheral oscillators. Results demonstrated that the tissues of polian vesicle and nerve ring exhibited significant clock gene expression associated with the orchestration of circadian regulation, and that environmental light fluctuations exerted influence on the expression of these clock genes. However, a number of genes, such as <em>AjArnt1</em> and <em>AjCry1</em>, maintained their circadian rhythmicity even under continuous light conditions. Moreover, we further investigated the circadian patterns of melatonin (MT), serotonin (5-HT), and dopamine (DA) secretion in <em>A. japonicus</em>, data that underscored the tissue-specific regulatory differences and the inherent adaptability to dynamic light environments. Collectively, these findings will provide the molecular mechanisms controlling the circadian rhythm in echinoderms and the candidate tissues playing the role of central oscillators in sea cucumbers.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":"270 ","pages":"Article 110930"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circadian rhythm regulation in the sea cucumber Apostichopus japonicus: Insights into clock gene expression, photoperiod susceptibility, and neurohormone signaling\",\"authors\":\"Zhiqing Ye, Ying Wei, Guangbo Zhang, Lifei Ge, Chenqian Wu, Yucheng Ren, Jixiu Wang, Xiuwen Xu, Jingwen Yang, Tianming Wang\",\"doi\":\"10.1016/j.cbpb.2023.110930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sea cucumber <span><em>Apostichopus japonicus</em></span><span> displays the typical circadian rhythms. This present study investigated the molecular regulation of clock genes, as well as monoamines and melatonin, in multiple tissues of </span><em>A. japonicus</em><span>, responding to the photoperiod. In order to determine their pivotal role in circadian rhythms, the crucial clock genes, namely </span><em>AjClock</em>, <em>AjArnt1</em>, <em>AjCry1</em>, and <em>AjTimeless</em>, were identified and a comprehensive analysis of their expressions across various tissues in adult <em>A. japonicus</em> was conducted, revealing the potential existence of central and peripheral oscillators. Results demonstrated that the tissues of polian vesicle and nerve ring exhibited significant clock gene expression associated with the orchestration of circadian regulation, and that environmental light fluctuations exerted influence on the expression of these clock genes. However, a number of genes, such as <em>AjArnt1</em> and <em>AjCry1</em>, maintained their circadian rhythmicity even under continuous light conditions. Moreover, we further investigated the circadian patterns of melatonin (MT), serotonin (5-HT), and dopamine (DA) secretion in <em>A. japonicus</em>, data that underscored the tissue-specific regulatory differences and the inherent adaptability to dynamic light environments. Collectively, these findings will provide the molecular mechanisms controlling the circadian rhythm in echinoderms and the candidate tissues playing the role of central oscillators in sea cucumbers.</p></div>\",\"PeriodicalId\":55236,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology\",\"volume\":\"270 \",\"pages\":\"Article 110930\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096495923001057\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495923001057","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Circadian rhythm regulation in the sea cucumber Apostichopus japonicus: Insights into clock gene expression, photoperiod susceptibility, and neurohormone signaling
Sea cucumber Apostichopus japonicus displays the typical circadian rhythms. This present study investigated the molecular regulation of clock genes, as well as monoamines and melatonin, in multiple tissues of A. japonicus, responding to the photoperiod. In order to determine their pivotal role in circadian rhythms, the crucial clock genes, namely AjClock, AjArnt1, AjCry1, and AjTimeless, were identified and a comprehensive analysis of their expressions across various tissues in adult A. japonicus was conducted, revealing the potential existence of central and peripheral oscillators. Results demonstrated that the tissues of polian vesicle and nerve ring exhibited significant clock gene expression associated with the orchestration of circadian regulation, and that environmental light fluctuations exerted influence on the expression of these clock genes. However, a number of genes, such as AjArnt1 and AjCry1, maintained their circadian rhythmicity even under continuous light conditions. Moreover, we further investigated the circadian patterns of melatonin (MT), serotonin (5-HT), and dopamine (DA) secretion in A. japonicus, data that underscored the tissue-specific regulatory differences and the inherent adaptability to dynamic light environments. Collectively, these findings will provide the molecular mechanisms controlling the circadian rhythm in echinoderms and the candidate tissues playing the role of central oscillators in sea cucumbers.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.