计算离散无记忆源中固定长度有损源编码的最佳误差指数函数

Yutaka Jitsumatsu
{"title":"计算离散无记忆源中固定长度有损源编码的最佳误差指数函数","authors":"Yutaka Jitsumatsu","doi":"arxiv-2312.03784","DOIUrl":null,"url":null,"abstract":"The error exponent of fixed-length lossy source coding was established by\nMarton. Ahlswede showed that this exponent can be discontinuous at a rate $R$,\ndepending on the source distribution $P$ and the distortion measure $d(x,y)$.\nThe reason for the discontinuity in the error exponent is that there exists a\ndistortion measure $d(x,y)$ and a distortion level $\\Delta$ such that the\nrate-distortion function $R(\\Delta|P)$ is neither concave nor quasi-concave\nwith respect to $P$. Arimoto's algorithm for computing the error exponent in\nlossy source coding is based on Blahut's parametric representation of the error\nexponent. However, Blahut's parametric representation is a lower convex\nenvelope of Marton's exponent, and the two do not generally agree. A major\ncontribution of this paper is to provide a parametric representation that\nperfectly matches the inverse function of Marton's exponent, thereby preventing\nthe problems arising from the above-mentioned non-concavity of $R(\\Delta|P)$.\nFor fixed parameters, an optimal distribution can be obtained using Arimoto's\nalgorithm. By performing a nonconvex optimization over the parameters, the\ninverse function of Marton's exponent is obtained.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"228 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of the optimal error exponent function for fixed-length lossy source coding in discrete memoryless sources\",\"authors\":\"Yutaka Jitsumatsu\",\"doi\":\"arxiv-2312.03784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The error exponent of fixed-length lossy source coding was established by\\nMarton. Ahlswede showed that this exponent can be discontinuous at a rate $R$,\\ndepending on the source distribution $P$ and the distortion measure $d(x,y)$.\\nThe reason for the discontinuity in the error exponent is that there exists a\\ndistortion measure $d(x,y)$ and a distortion level $\\\\Delta$ such that the\\nrate-distortion function $R(\\\\Delta|P)$ is neither concave nor quasi-concave\\nwith respect to $P$. Arimoto's algorithm for computing the error exponent in\\nlossy source coding is based on Blahut's parametric representation of the error\\nexponent. However, Blahut's parametric representation is a lower convex\\nenvelope of Marton's exponent, and the two do not generally agree. A major\\ncontribution of this paper is to provide a parametric representation that\\nperfectly matches the inverse function of Marton's exponent, thereby preventing\\nthe problems arising from the above-mentioned non-concavity of $R(\\\\Delta|P)$.\\nFor fixed parameters, an optimal distribution can be obtained using Arimoto's\\nalgorithm. By performing a nonconvex optimization over the parameters, the\\ninverse function of Marton's exponent is obtained.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"228 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.03784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

固定长度有损信源编码的误差指数是由马顿确定的。误差指数不连续的原因是存在一个失真度量 $d(x,y)$ 和一个失真水平 $\Delta$,使得有源失真函数 $R(\Delta|P)$ 相对于 $P 既不凹也不准凹。有元算法计算有损信源编码中的误差指数是基于 Blahut 的误差指数参数表示法。然而,Blahut 的参数表示是 Marton 指数的下凸包络,二者一般并不一致。本文的一个主要贡献是提供了一种参数表示法,它与马顿指数的反函数完全匹配,从而避免了因上述 $R(\Delta|P)$ 的非凹性而产生的问题。通过对参数进行非凸优化,可以得到马顿指数的反函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computation of the optimal error exponent function for fixed-length lossy source coding in discrete memoryless sources
The error exponent of fixed-length lossy source coding was established by Marton. Ahlswede showed that this exponent can be discontinuous at a rate $R$, depending on the source distribution $P$ and the distortion measure $d(x,y)$. The reason for the discontinuity in the error exponent is that there exists a distortion measure $d(x,y)$ and a distortion level $\Delta$ such that the rate-distortion function $R(\Delta|P)$ is neither concave nor quasi-concave with respect to $P$. Arimoto's algorithm for computing the error exponent in lossy source coding is based on Blahut's parametric representation of the error exponent. However, Blahut's parametric representation is a lower convex envelope of Marton's exponent, and the two do not generally agree. A major contribution of this paper is to provide a parametric representation that perfectly matches the inverse function of Marton's exponent, thereby preventing the problems arising from the above-mentioned non-concavity of $R(\Delta|P)$. For fixed parameters, an optimal distribution can be obtained using Arimoto's algorithm. By performing a nonconvex optimization over the parameters, the inverse function of Marton's exponent is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1