利用量子回归估算俄罗斯境内地表温度趋势的空间模式

IF 0.9 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Izvestiya Atmospheric and Oceanic Physics Pub Date : 2023-12-08 DOI:10.1134/s0001433823140128
A. M. Sterin, A. S. Lavrov
{"title":"利用量子回归估算俄罗斯境内地表温度趋势的空间模式","authors":"A. M. Sterin, A. S. Lavrov","doi":"10.1134/s0001433823140128","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This work involves calculations of climatic trends of anomalies in daily minimum, maximum, and average air temperatures based on the quantile regression method (QRM), which allows one to estimate trends in detail for any quantile in the range of quantile values from 0 to 1. Based on the QRM climate trend calculations detailed for different quantiles of trends in daily air temperature anomalies, clustering of more than 1400 meteorological stations of Russia is performed. Clustering is carried out in the multidimensional space, the formation of which takes into account seasonal peculiarities of the QRM trends of anomalies for three types of daily temperatures (daily minimum, maximum, and average temperatures) and features of the QRM trends in different parts of the quantile range. Twelve clusters of weather stations have been distinguished in the created multidimensional space using the k-means method. The stations that are included in each of the distinguished clusters are similar in terms of manifestation of the QRM trends of temperature. Despite the absence of characteristics of the geographical location of the observation stations among the variables of the multidimensional space, the stations within each of the twelve distinguished clusters are situated geographically quite compactly. The geographical distribution of stations assigned to different clusters is demonstrated and discussed. Based on the results of clustering, some features of quantile trends of temperature anomalies of specific seasons within the groups of stations assigned to individual clusters are described. Differences in manifestation of quantile trends between 12 clusters of Russian stations distinguished based on QRM quantile trends are obvious. At the same time, however, significant similarities can be observed between some individual pairs of clusters. The approaches and results of this work can be used to improve the climatic zoning of the Russian territory, which seems to be very relevant for the preparation and implementation of regional plans of adaptation to climate changes. The results can also be used for solving various applied climatology problems based on calculations of quantiles of different meteorological parameters.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"3 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Quantile Regression to Estimate Spatial Patterns of Surface Temperature Trends over the Territory of Russia\",\"authors\":\"A. M. Sterin, A. S. Lavrov\",\"doi\":\"10.1134/s0001433823140128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>This work involves calculations of climatic trends of anomalies in daily minimum, maximum, and average air temperatures based on the quantile regression method (QRM), which allows one to estimate trends in detail for any quantile in the range of quantile values from 0 to 1. Based on the QRM climate trend calculations detailed for different quantiles of trends in daily air temperature anomalies, clustering of more than 1400 meteorological stations of Russia is performed. Clustering is carried out in the multidimensional space, the formation of which takes into account seasonal peculiarities of the QRM trends of anomalies for three types of daily temperatures (daily minimum, maximum, and average temperatures) and features of the QRM trends in different parts of the quantile range. Twelve clusters of weather stations have been distinguished in the created multidimensional space using the k-means method. The stations that are included in each of the distinguished clusters are similar in terms of manifestation of the QRM trends of temperature. Despite the absence of characteristics of the geographical location of the observation stations among the variables of the multidimensional space, the stations within each of the twelve distinguished clusters are situated geographically quite compactly. The geographical distribution of stations assigned to different clusters is demonstrated and discussed. Based on the results of clustering, some features of quantile trends of temperature anomalies of specific seasons within the groups of stations assigned to individual clusters are described. Differences in manifestation of quantile trends between 12 clusters of Russian stations distinguished based on QRM quantile trends are obvious. At the same time, however, significant similarities can be observed between some individual pairs of clusters. The approaches and results of this work can be used to improve the climatic zoning of the Russian territory, which seems to be very relevant for the preparation and implementation of regional plans of adaptation to climate changes. The results can also be used for solving various applied climatology problems based on calculations of quantiles of different meteorological parameters.</p>\",\"PeriodicalId\":54911,\"journal\":{\"name\":\"Izvestiya Atmospheric and Oceanic Physics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001433823140128\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0001433823140128","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

摘要 这项工作涉及根据量值回归法(QRM)计算日最低、最高和平均气温异常的气候趋势,该方法允许对量值范围从 0 到 1 的任何量值的趋势进行详细估算。 根据对日气温异常趋势不同量值的 QRM 气候趋势详细计算,对俄罗斯 1400 多个气象站进行了聚类。聚类是在多维空间中进行的,其形成考虑到了三种日气温(日最低气温、日最高气温和日平均气温)异常的 QRM 趋势的季节性特点以及 QRM 趋势在量值范围不同部分的特点。在创建的多维空间中,使用 k-means 方法区分了 12 个气象站群。每个群组中的气象站在气温的 QRM 趋势表现方面都很相似。尽管在多维空间的变量中没有观测站地理位置的特征,但 12 个区分群组中每个群组内的观测站在地理位置上都相当紧凑。本文论证并讨论了被分配到不同群组的观测站的地理分布情况。根据聚类结果,描述了分配到各个聚类的台站组内特定季节气温异常的量纲趋势的一些特点。根据 QRM 量值趋势划分的 12 个俄罗斯台站群在量值趋势表现方面存在明显差异。但与此同时,也可以观察到一些单对群组之间存在明显的相似性。这项工作的方法和结果可用于改善俄罗斯领土的气候区划,这似乎与编制和实施适应气候变化的地区计划非常相关。研究结果还可用于解决基于不同气象参数定量计算的各种应用气候学问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Quantile Regression to Estimate Spatial Patterns of Surface Temperature Trends over the Territory of Russia

Abstract

This work involves calculations of climatic trends of anomalies in daily minimum, maximum, and average air temperatures based on the quantile regression method (QRM), which allows one to estimate trends in detail for any quantile in the range of quantile values from 0 to 1. Based on the QRM climate trend calculations detailed for different quantiles of trends in daily air temperature anomalies, clustering of more than 1400 meteorological stations of Russia is performed. Clustering is carried out in the multidimensional space, the formation of which takes into account seasonal peculiarities of the QRM trends of anomalies for three types of daily temperatures (daily minimum, maximum, and average temperatures) and features of the QRM trends in different parts of the quantile range. Twelve clusters of weather stations have been distinguished in the created multidimensional space using the k-means method. The stations that are included in each of the distinguished clusters are similar in terms of manifestation of the QRM trends of temperature. Despite the absence of characteristics of the geographical location of the observation stations among the variables of the multidimensional space, the stations within each of the twelve distinguished clusters are situated geographically quite compactly. The geographical distribution of stations assigned to different clusters is demonstrated and discussed. Based on the results of clustering, some features of quantile trends of temperature anomalies of specific seasons within the groups of stations assigned to individual clusters are described. Differences in manifestation of quantile trends between 12 clusters of Russian stations distinguished based on QRM quantile trends are obvious. At the same time, however, significant similarities can be observed between some individual pairs of clusters. The approaches and results of this work can be used to improve the climatic zoning of the Russian territory, which seems to be very relevant for the preparation and implementation of regional plans of adaptation to climate changes. The results can also be used for solving various applied climatology problems based on calculations of quantiles of different meteorological parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
28.60%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.
期刊最新文献
Bayesian Estimates of Changes in Russian River Runoff in the 21st Century Based on the CMIP6 Ensemble Model Simulations Natural Sinks and Sources of CO2 and CH4 in the Atmosphere of Russian Regions and Their Contribution to Climate Change in the 21st Century Evaluated with the CMIP6 Model Ensemble Influence of Modeling Conditions on the Estimation of the Dry Deposition Velocity of Aerosols on Highly Inhomogeneous Surfaces Dynamics of Air Temperature Changes in the Atmospheric Boundary Layer during the Solar Eclipse of March 29, 2006 Analysis of Noctilucent Cloud Fields According to Ground-Based Network and Airborne Photography Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1