气候变化对俄罗斯河流年径流量和最大径流量的影响:诊断与预测

IF 0.9 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Izvestiya Atmospheric and Oceanic Physics Pub Date : 2023-12-08 DOI:10.1134/s0001433823140074
A. N. Gelfan, N. L. Frolova, D. V. Magritsky, M. B. Kireeva, V. Yu. Grigoriev, Yu. G. Motovilov, E. M. Gusev
{"title":"气候变化对俄罗斯河流年径流量和最大径流量的影响:诊断与预测","authors":"A. N. Gelfan, N. L. Frolova, D. V. Magritsky, M. B. Kireeva, V. Yu. Grigoriev, Yu. G. Motovilov, E. M. Gusev","doi":"10.1134/s0001433823140074","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The article provides an overview of publications devoted to assessing changes in the water regime of Russian rivers under the conditions of current and projected climate changes. The most recent summary of the relevant publications is contained in the national assessment reports of Roshydromet. Since the publication of these fundamental works, a large number of studies have been published, clarifying the conclusions of the national reports. The purpose of this review is to summarize the modern ideas about the impact of climate change on the territory of the Russian Federation on the mean annual and maximum river flow, primarily based on the publications in recent years. The review is divided into two parts. The first part presents the results of the diagnosis of changes in the long-term norms of the annual and maximum flow of Russian rivers that occurred during the period of instrumental observations in the XX–early XXI centuries. Due to the geographical differences in the direction and magnitude of climate changes and associated changes in the water regime of rivers, the review is given separately for the rivers of the European and Asian territories of Russia. It is shown that the annual runoff over the territory of European Russia in recent decades has a tendency to increase, associated with a general rise in the humidity of the territory. However, for most of the analyzed river basins, the changes are statistically insignificant. The annual runoff of rivers from the territory of Siberia and the Far East into the Arctic seas of Russia has also slightly increased on average. The changes in the maximum runoff are more pronounced and differently directed. The second part of the article provides an overview of publications that present projections of changes in the water regime of Russian rivers until the end of the XXI century. The projections were obtained in ensemble experiments with climate models or with regional hydrological models. The conclusions made in the Second Assessment Report of Roshydromet regarding the insignificant positive anomalies of the annual runoff rate for most of the territory of Russia under moderate anthropogenic warming scenarios in the XXI century have been confirmed. The most pronounced positive anomalies of the snowmelt and rainfall runoff in the XXI century are possible on large rivers of Siberia in the case of implementation of the RCP8.5 scenario of anthropogenic radiation impact.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"195 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate Change Impact on the Annual and Maximum Runoff of Russian Rivers: Diagnosis and Projections\",\"authors\":\"A. N. Gelfan, N. L. Frolova, D. V. Magritsky, M. B. Kireeva, V. Yu. Grigoriev, Yu. G. Motovilov, E. M. Gusev\",\"doi\":\"10.1134/s0001433823140074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The article provides an overview of publications devoted to assessing changes in the water regime of Russian rivers under the conditions of current and projected climate changes. The most recent summary of the relevant publications is contained in the national assessment reports of Roshydromet. Since the publication of these fundamental works, a large number of studies have been published, clarifying the conclusions of the national reports. The purpose of this review is to summarize the modern ideas about the impact of climate change on the territory of the Russian Federation on the mean annual and maximum river flow, primarily based on the publications in recent years. The review is divided into two parts. The first part presents the results of the diagnosis of changes in the long-term norms of the annual and maximum flow of Russian rivers that occurred during the period of instrumental observations in the XX–early XXI centuries. Due to the geographical differences in the direction and magnitude of climate changes and associated changes in the water regime of rivers, the review is given separately for the rivers of the European and Asian territories of Russia. It is shown that the annual runoff over the territory of European Russia in recent decades has a tendency to increase, associated with a general rise in the humidity of the territory. However, for most of the analyzed river basins, the changes are statistically insignificant. The annual runoff of rivers from the territory of Siberia and the Far East into the Arctic seas of Russia has also slightly increased on average. The changes in the maximum runoff are more pronounced and differently directed. The second part of the article provides an overview of publications that present projections of changes in the water regime of Russian rivers until the end of the XXI century. The projections were obtained in ensemble experiments with climate models or with regional hydrological models. The conclusions made in the Second Assessment Report of Roshydromet regarding the insignificant positive anomalies of the annual runoff rate for most of the territory of Russia under moderate anthropogenic warming scenarios in the XXI century have been confirmed. The most pronounced positive anomalies of the snowmelt and rainfall runoff in the XXI century are possible on large rivers of Siberia in the case of implementation of the RCP8.5 scenario of anthropogenic radiation impact.</p>\",\"PeriodicalId\":54911,\"journal\":{\"name\":\"Izvestiya Atmospheric and Oceanic Physics\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001433823140074\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0001433823140074","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文概述了在当前和预测气候变化条件下,专门评估俄罗斯河流水系变化的出版物。相关出版物的最新摘要载于 Roshydromet 的国家评估报告中。自这些基本著作出版以来,又有大量研究报告出版,对国家报告的结论进行了澄清。本综述旨在总结气候变化对俄罗斯联邦境内河流年平均流量和最大流量影响的现代观点,主要以近年来的出版物为基础。综述分为两部分。第一部分介绍了对俄罗斯河流年均流量和最大流量长期标准变化的分析结果,这些变化发生在二十世纪至二十一世纪初的仪器观测期间。由于气候变化的方向和幅度以及与之相关的河流水系变化存在地理差异,因此分别对俄罗斯欧洲和亚洲地区的河流进行了分析。研究表明,近几十年来,俄罗斯欧洲地区的年径流量有增加的趋势,这与该地区湿度的普遍上升有关。不过,对于大多数分析流域而言,这些变化在统计上并不显著。从西伯利亚和远东地区流入俄罗斯北极海域的河流年径流量平均也略有增加。最大径流量的变化更为明显,且方向不同。文章第二部分概述了对二十一世纪末俄罗斯河流水系变化进行预测的出版物。这些预测是通过气候模型或区域水文模型的集合实验得出的。俄罗斯水文局第二次评估报告》中的结论得到了证实,即在二十一世纪中度人为变暖的情况下,俄罗斯大部分地区的年径流量会出现不明显的正异常。在实施 RCP8.5 人为辐射影响方案的情况下,21 世纪西伯利亚大河的融雪和降雨径流量可能出现最明显的正异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Climate Change Impact on the Annual and Maximum Runoff of Russian Rivers: Diagnosis and Projections

Abstract

The article provides an overview of publications devoted to assessing changes in the water regime of Russian rivers under the conditions of current and projected climate changes. The most recent summary of the relevant publications is contained in the national assessment reports of Roshydromet. Since the publication of these fundamental works, a large number of studies have been published, clarifying the conclusions of the national reports. The purpose of this review is to summarize the modern ideas about the impact of climate change on the territory of the Russian Federation on the mean annual and maximum river flow, primarily based on the publications in recent years. The review is divided into two parts. The first part presents the results of the diagnosis of changes in the long-term norms of the annual and maximum flow of Russian rivers that occurred during the period of instrumental observations in the XX–early XXI centuries. Due to the geographical differences in the direction and magnitude of climate changes and associated changes in the water regime of rivers, the review is given separately for the rivers of the European and Asian territories of Russia. It is shown that the annual runoff over the territory of European Russia in recent decades has a tendency to increase, associated with a general rise in the humidity of the territory. However, for most of the analyzed river basins, the changes are statistically insignificant. The annual runoff of rivers from the territory of Siberia and the Far East into the Arctic seas of Russia has also slightly increased on average. The changes in the maximum runoff are more pronounced and differently directed. The second part of the article provides an overview of publications that present projections of changes in the water regime of Russian rivers until the end of the XXI century. The projections were obtained in ensemble experiments with climate models or with regional hydrological models. The conclusions made in the Second Assessment Report of Roshydromet regarding the insignificant positive anomalies of the annual runoff rate for most of the territory of Russia under moderate anthropogenic warming scenarios in the XXI century have been confirmed. The most pronounced positive anomalies of the snowmelt and rainfall runoff in the XXI century are possible on large rivers of Siberia in the case of implementation of the RCP8.5 scenario of anthropogenic radiation impact.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
28.60%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.
期刊最新文献
Bayesian Estimates of Changes in Russian River Runoff in the 21st Century Based on the CMIP6 Ensemble Model Simulations Natural Sinks and Sources of CO2 and CH4 in the Atmosphere of Russian Regions and Their Contribution to Climate Change in the 21st Century Evaluated with the CMIP6 Model Ensemble Influence of Modeling Conditions on the Estimation of the Dry Deposition Velocity of Aerosols on Highly Inhomogeneous Surfaces Dynamics of Air Temperature Changes in the Atmospheric Boundary Layer during the Solar Eclipse of March 29, 2006 Analysis of Noctilucent Cloud Fields According to Ground-Based Network and Airborne Photography Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1