生物质碳作为金属空气电池阴极的研究进展

IF 5.7 3区 材料科学 Q2 Materials Science New Carbon Materials Pub Date : 2023-12-01 DOI:10.1016/S1872-5805(23)60784-X
Li-lai Lu, Qing-shan Li, Yuan-na Sun, Kun-bin Kuang, Zhi Li, Tao Wang, Ying Gao, Jun-bo Wang
{"title":"生物质碳作为金属空气电池阴极的研究进展","authors":"Li-lai Lu,&nbsp;Qing-shan Li,&nbsp;Yuan-na Sun,&nbsp;Kun-bin Kuang,&nbsp;Zhi Li,&nbsp;Tao Wang,&nbsp;Ying Gao,&nbsp;Jun-bo Wang","doi":"10.1016/S1872-5805(23)60784-X","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-air batteries have received significant attention as highly efficient energy conversion and storage devices. Nevertheless, several difficulties, such as the sluggish reaction kinetics of the cathode and the high cost of precious metals, have significantly hampered their commercialization. Biomass carbon materials have emerged as an important alternative for the development of high-performance cathode materials in metal-air batteries, owing to their remarkable electrochemical characteristics, environmental friendliness and cost effectiveness. In recent years, there has been huge progress in the preparation and design of biomass carbon materials. This review summarizes the most recent research on these materials, and the effects of the reaction mechanism, synthesis method and multidimensional (1D, 2D, 3D) structure on their electrocatalytic performance are reviewed. Finally, problems associated with their use and possible new developments are discussed. The review presents new perspectives on the structure of these materials, and provides a basis for the development of efficient, affordable, and stable cathode materials for metal-air batteries.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress on biomass carbon as the cathode of a metal-air battery\",\"authors\":\"Li-lai Lu,&nbsp;Qing-shan Li,&nbsp;Yuan-na Sun,&nbsp;Kun-bin Kuang,&nbsp;Zhi Li,&nbsp;Tao Wang,&nbsp;Ying Gao,&nbsp;Jun-bo Wang\",\"doi\":\"10.1016/S1872-5805(23)60784-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal-air batteries have received significant attention as highly efficient energy conversion and storage devices. Nevertheless, several difficulties, such as the sluggish reaction kinetics of the cathode and the high cost of precious metals, have significantly hampered their commercialization. Biomass carbon materials have emerged as an important alternative for the development of high-performance cathode materials in metal-air batteries, owing to their remarkable electrochemical characteristics, environmental friendliness and cost effectiveness. In recent years, there has been huge progress in the preparation and design of biomass carbon materials. This review summarizes the most recent research on these materials, and the effects of the reaction mechanism, synthesis method and multidimensional (1D, 2D, 3D) structure on their electrocatalytic performance are reviewed. Finally, problems associated with their use and possible new developments are discussed. The review presents new perspectives on the structure of these materials, and provides a basis for the development of efficient, affordable, and stable cathode materials for metal-air batteries.</p></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187258052360784X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187258052360784X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

金属空气电池作为一种高效的能量转换和储存设备受到了广泛关注。然而,阴极反应动力学迟缓和贵金属成本高昂等困难极大地阻碍了其商业化。生物质碳材料因其显著的电化学特性、环境友好性和成本效益,已成为开发金属空气电池高性能阴极材料的重要替代材料。近年来,生物质碳材料的制备和设计取得了巨大进展。本综述总结了有关这些材料的最新研究,并综述了反应机理、合成方法和多维(一维、二维、三维)结构对其电催化性能的影响。最后,还讨论了与这些材料的使用相关的问题以及可能的新发展。综述为这些材料的结构提供了新的视角,为开发高效、经济、稳定的金属空气电池阴极材料奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research progress on biomass carbon as the cathode of a metal-air battery

Metal-air batteries have received significant attention as highly efficient energy conversion and storage devices. Nevertheless, several difficulties, such as the sluggish reaction kinetics of the cathode and the high cost of precious metals, have significantly hampered their commercialization. Biomass carbon materials have emerged as an important alternative for the development of high-performance cathode materials in metal-air batteries, owing to their remarkable electrochemical characteristics, environmental friendliness and cost effectiveness. In recent years, there has been huge progress in the preparation and design of biomass carbon materials. This review summarizes the most recent research on these materials, and the effects of the reaction mechanism, synthesis method and multidimensional (1D, 2D, 3D) structure on their electrocatalytic performance are reviewed. Finally, problems associated with their use and possible new developments are discussed. The review presents new perspectives on the structure of these materials, and provides a basis for the development of efficient, affordable, and stable cathode materials for metal-air batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
期刊最新文献
A review of hard carbon anodes for rechargeable sodium-ion batteries Recent advances in producing hollow carbon spheres for use in sodium−sulfur and potassium−sulfur batteries Design, progress and challenges of 3D carbon-based thermally conductive networks The application of metal–organic frameworks and their derivatives for lithium-ion capacitors A review of the carbon coating of the silicon anode in high-performance lithium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1