Ziting Gao, Wenjuan Chu, Lu Han, Jiqiang Wan, Mengxue Li, Xiaopeng Yang, Qi Guo, Hongliang Lu, Xiaoming Ji, Haiying Tian, Miao Lai
{"title":"酶法合成的丙二醇酯的吸湿性和热解性能分析","authors":"Ziting Gao, Wenjuan Chu, Lu Han, Jiqiang Wan, Mengxue Li, Xiaopeng Yang, Qi Guo, Hongliang Lu, Xiaoming Ji, Haiying Tian, Miao Lai","doi":"10.1002/ffj.3771","DOIUrl":null,"url":null,"abstract":"<p>In order to develop food or tobacco usable flavour precursors, compounds 2-hydroxypropyl benzoate (3a), propane-1,2-diyl dibenzoate (4a), 2-hydroxypropyl cinnamate (3b) and propane-1,2-diyl (2E,2′ E)-bis(3-hydroxypropyl cinnamate) (4b) were synthesized by transesterification propanediol with vinyl benzoate and vinyl cinnamate under the biological enzyme Novozym435. The structures of the propanediol esters were characterized using nuclear magnetic resonance (<sup>1</sup>H NMR, <sup>13</sup>C NMR), infrared spectroscopy (IR) and high-resolution mass spectrometry (HRMS). The hygroscopicity and moisture retention capacity of reconstituted tobacco shreds with the synthesized propanediol were explored by 100 h hygroscopic desorption assay, model validation and low-field nuclear magnetic resonance imaging (LF-NMR). The results showed that the bound water content of 3a and 3b was lower than that of propanediol and higher than that of the control under both low (RH = 32%) and high (RH = 84%) humidity conditions. In addition, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) technique was applied to investigate the thermal behaviour of 3a and 3b. Four and five pyrolysis products were formed by pyrolysis of 3a and 3b, respectively. The main pyrolysis products benzoic acid and cinnamic acid could be used as flavouring agents in food and tobacco. 3a and 3b had good moisture and humidity retention effects as well as uniform and sustained flavour release. The results of the study not only effectively improve the water absorbency of reconstituted tobacco and enhance the flavour, which is suitable for the storage and smoking process, but also provide a reference for the further development of new flavour moisturizers in the tobacco industry.</p>","PeriodicalId":170,"journal":{"name":"Flavour and Fragrance Journal","volume":"39 2","pages":"125-135"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of hygroscopicity and pyrolysis behaviour of propanediol esters synthesized by the enzymatic method\",\"authors\":\"Ziting Gao, Wenjuan Chu, Lu Han, Jiqiang Wan, Mengxue Li, Xiaopeng Yang, Qi Guo, Hongliang Lu, Xiaoming Ji, Haiying Tian, Miao Lai\",\"doi\":\"10.1002/ffj.3771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to develop food or tobacco usable flavour precursors, compounds 2-hydroxypropyl benzoate (3a), propane-1,2-diyl dibenzoate (4a), 2-hydroxypropyl cinnamate (3b) and propane-1,2-diyl (2E,2′ E)-bis(3-hydroxypropyl cinnamate) (4b) were synthesized by transesterification propanediol with vinyl benzoate and vinyl cinnamate under the biological enzyme Novozym435. The structures of the propanediol esters were characterized using nuclear magnetic resonance (<sup>1</sup>H NMR, <sup>13</sup>C NMR), infrared spectroscopy (IR) and high-resolution mass spectrometry (HRMS). The hygroscopicity and moisture retention capacity of reconstituted tobacco shreds with the synthesized propanediol were explored by 100 h hygroscopic desorption assay, model validation and low-field nuclear magnetic resonance imaging (LF-NMR). The results showed that the bound water content of 3a and 3b was lower than that of propanediol and higher than that of the control under both low (RH = 32%) and high (RH = 84%) humidity conditions. In addition, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) technique was applied to investigate the thermal behaviour of 3a and 3b. Four and five pyrolysis products were formed by pyrolysis of 3a and 3b, respectively. The main pyrolysis products benzoic acid and cinnamic acid could be used as flavouring agents in food and tobacco. 3a and 3b had good moisture and humidity retention effects as well as uniform and sustained flavour release. The results of the study not only effectively improve the water absorbency of reconstituted tobacco and enhance the flavour, which is suitable for the storage and smoking process, but also provide a reference for the further development of new flavour moisturizers in the tobacco industry.</p>\",\"PeriodicalId\":170,\"journal\":{\"name\":\"Flavour and Fragrance Journal\",\"volume\":\"39 2\",\"pages\":\"125-135\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flavour and Fragrance Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ffj.3771\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flavour and Fragrance Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ffj.3771","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Analysis of hygroscopicity and pyrolysis behaviour of propanediol esters synthesized by the enzymatic method
In order to develop food or tobacco usable flavour precursors, compounds 2-hydroxypropyl benzoate (3a), propane-1,2-diyl dibenzoate (4a), 2-hydroxypropyl cinnamate (3b) and propane-1,2-diyl (2E,2′ E)-bis(3-hydroxypropyl cinnamate) (4b) were synthesized by transesterification propanediol with vinyl benzoate and vinyl cinnamate under the biological enzyme Novozym435. The structures of the propanediol esters were characterized using nuclear magnetic resonance (1H NMR, 13C NMR), infrared spectroscopy (IR) and high-resolution mass spectrometry (HRMS). The hygroscopicity and moisture retention capacity of reconstituted tobacco shreds with the synthesized propanediol were explored by 100 h hygroscopic desorption assay, model validation and low-field nuclear magnetic resonance imaging (LF-NMR). The results showed that the bound water content of 3a and 3b was lower than that of propanediol and higher than that of the control under both low (RH = 32%) and high (RH = 84%) humidity conditions. In addition, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) technique was applied to investigate the thermal behaviour of 3a and 3b. Four and five pyrolysis products were formed by pyrolysis of 3a and 3b, respectively. The main pyrolysis products benzoic acid and cinnamic acid could be used as flavouring agents in food and tobacco. 3a and 3b had good moisture and humidity retention effects as well as uniform and sustained flavour release. The results of the study not only effectively improve the water absorbency of reconstituted tobacco and enhance the flavour, which is suitable for the storage and smoking process, but also provide a reference for the further development of new flavour moisturizers in the tobacco industry.
期刊介绍:
Flavour and Fragrance Journal publishes original research articles, reviews and special reports on all aspects of flavour and fragrance. Its high scientific standards and international character is ensured by a strict refereeing system and an editorial team representing the multidisciplinary expertise of our field of research. Because analysis is the matter of many submissions and supports the data used in many other domains, a special attention is placed on the quality of analytical techniques. All natural or synthetic products eliciting or influencing a sensory stimulus related to gustation or olfaction are eligible for publication in the Journal. Eligible as well are the techniques related to their preparation, characterization and safety. This notably involves analytical and sensory analysis, physical chemistry, modeling, microbiology – antimicrobial properties, biology, chemosensory perception and legislation.
The overall aim is to produce a journal of the highest quality which provides a scientific forum for academia as well as for industry on all aspects of flavors, fragrances and related materials, and which is valued by readers and contributors alike.