α-突触核蛋白寡聚体结构特性一瞥

IF 5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY BioFactors Pub Date : 2023-12-08 DOI:10.1002/biof.2021
Jaime Santos, Irantzu Pallarès, Salvador Ventura
{"title":"α-突触核蛋白寡聚体结构特性一瞥","authors":"Jaime Santos,&nbsp;Irantzu Pallarès,&nbsp;Salvador Ventura","doi":"10.1002/biof.2021","DOIUrl":null,"url":null,"abstract":"<p>α-Synuclein (αS) aggregation is the main neurological hallmark of a group of debilitating neurodegenerative disorders, collectively referred to as synucleinopathies, of which Parkinson's disease is the most prevalent. αS oligomers formed during the initial stages of aggregation are considered key pathogenic drivers of disease onset and progression, standing as privileged targets for therapeutic intervention and diagnosis. However, the structure of αS oligomers and the mechanistic basis of oligomer to fibril conversion are yet poorly understood, thereby precluding the rational formulation of strategies aimed at targeting oligomeric species. In this review, we delve into the recent advances in the structural and mechanistic characterization of αS oligomers. We also discuss how these advances are transforming our understanding of these elusive species and paving the way for oligomer-targeting therapeutics and diagnosis.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biof.2021","citationCount":"0","resultStr":"{\"title\":\"A glimpse into the structural properties of α-synuclein oligomers\",\"authors\":\"Jaime Santos,&nbsp;Irantzu Pallarès,&nbsp;Salvador Ventura\",\"doi\":\"10.1002/biof.2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>α-Synuclein (αS) aggregation is the main neurological hallmark of a group of debilitating neurodegenerative disorders, collectively referred to as synucleinopathies, of which Parkinson's disease is the most prevalent. αS oligomers formed during the initial stages of aggregation are considered key pathogenic drivers of disease onset and progression, standing as privileged targets for therapeutic intervention and diagnosis. However, the structure of αS oligomers and the mechanistic basis of oligomer to fibril conversion are yet poorly understood, thereby precluding the rational formulation of strategies aimed at targeting oligomeric species. In this review, we delve into the recent advances in the structural and mechanistic characterization of αS oligomers. We also discuss how these advances are transforming our understanding of these elusive species and paving the way for oligomer-targeting therapeutics and diagnosis.</p>\",\"PeriodicalId\":8923,\"journal\":{\"name\":\"BioFactors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biof.2021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioFactors\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biof.2021\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.2021","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

α-突触核蛋白(αS)聚集是一组使人衰弱的神经退行性疾病(统称为突触核蛋白病)的主要神经特征,帕金森病是其中最常见的一种。聚集初期形成的αS低聚物被认为是疾病发生和发展的关键致病因素,是治疗干预和诊断的首选靶点。然而,人们对 αS 低聚物的结构以及低聚物向纤维转化的机理基础还知之甚少,因此无法合理制定针对低聚物的策略。在本综述中,我们将深入探讨αS低聚物结构和机理表征方面的最新进展。我们还将讨论这些进展如何改变我们对这些难以捉摸的物种的认识,并为寡聚体靶向治疗和诊断铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A glimpse into the structural properties of α-synuclein oligomers

α-Synuclein (αS) aggregation is the main neurological hallmark of a group of debilitating neurodegenerative disorders, collectively referred to as synucleinopathies, of which Parkinson's disease is the most prevalent. αS oligomers formed during the initial stages of aggregation are considered key pathogenic drivers of disease onset and progression, standing as privileged targets for therapeutic intervention and diagnosis. However, the structure of αS oligomers and the mechanistic basis of oligomer to fibril conversion are yet poorly understood, thereby precluding the rational formulation of strategies aimed at targeting oligomeric species. In this review, we delve into the recent advances in the structural and mechanistic characterization of αS oligomers. We also discuss how these advances are transforming our understanding of these elusive species and paving the way for oligomer-targeting therapeutics and diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioFactors
BioFactors 生物-内分泌学与代谢
CiteScore
11.50
自引率
3.30%
发文量
96
审稿时长
6-12 weeks
期刊介绍: BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease. The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements. In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.
期刊最新文献
Construction of lysosome-related prognostic signature to predict the survival outcomes and selecting suitable drugs for patients with HNSCC. Navigating the immune landscape with plasma cells: A pan-cancer signature for precision immunotherapy. Machine learning models reveal ARHGAP11A's impact on lymph node metastasis and stemness in NSCLC. The carcinogenesis of esophageal squamous cell cancer is positively regulated by USP13 through WISP1 deubiquitination. Piperine: an emerging biofactor with anticancer efficacy and therapeutic potential.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1