用于水性锂离子电池的 LiMnPO4 阴极材料的潜力:固态和绿色化学方法研究

IF 7.5 Q1 CHEMISTRY, PHYSICAL Applied Surface Science Advances Pub Date : 2023-12-09 DOI:10.1016/j.apsadv.2023.100537
Iheke Michael Nwachukwu , Assumpta Chinwe Nwanya , A.B.C. Ekwealor , Fabian I. Ezema
{"title":"用于水性锂离子电池的 LiMnPO4 阴极材料的潜力:固态和绿色化学方法研究","authors":"Iheke Michael Nwachukwu ,&nbsp;Assumpta Chinwe Nwanya ,&nbsp;A.B.C. Ekwealor ,&nbsp;Fabian I. Ezema","doi":"10.1016/j.apsadv.2023.100537","DOIUrl":null,"url":null,"abstract":"<div><p>The phospho-olivine LiMnPO<sub>4</sub> nanocrystal holds promise as a cathode material for next-generation Li-ion batteries (LIBs). In this study, we employed solid-state and green chemistry approaches to prepare LiMnPO<sub>4</sub> powders, with aloe vera extract serving as a capping agent for the latter approach. Selective synthesis of nanoparticles with more active sites for efficient Li<sup>+</sup> intercalation-deintercalation was achieved. The phase purity, morphology, and composition of the nanoparticles were characterized using XRD, SEM/TEM, and EDS, respectively. Electrochemical performance was evaluated through cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) in an aqueous environment. The solid-state synthesized LiMnPO<sub>4</sub> nanoparticles (LiMnPO<sub>4</sub>-SS) exhibited electrolyte-dependent performance but demonstrated good reversibility of Li<sup>+</sup> extraction and insertion. Specific capacity, retention of discharge capacity, and Coulombic efficiency were found to be 92.3 ± 0.5 mAhg<sup>−1</sup>, 98 %, and 93 %, respectively, after 50 cycles at 0.2 C. Additionally, energy density was measured as 15.8 ± 1.4 Whkg<sup>−1</sup> at 189.2 ± 1.9 Wkg<sup>−1</sup> power density. The green-synthesized LiMnPO<sub>4</sub> nanoparticles (LiMnPO<sub>4</sub>-GS) showed a specific capacity of 106.4 ± 0.9 mAhg<sup>−1</sup> (corresponding to ∼62 % of theoretical capacity) after 50 cycles, with capacity retention of ∼97 % and ∼80 % Coulombic efficiency. The energy density was 18.2 ± 1.7 Whkg<sup>−1</sup> at 218.1 ± 2.1 Wkg<sup>−1</sup> power density. EIS measurements indicated reduced charge transfer resistance for LiMnPO<sub>4</sub>-GS, optimizing interfacial electrochemical reaction activity. The observed regular micromorphology and (200) plane of nanosized LiMnPO<sub>4</sub> contributed to the excellent electrochemical performance. Overall, this investigation highlights the correlation among synthesis method, calcination temperature, electrolyte, crystal structure, and morphology, providing insights for the design of next-generation LIBs.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266652392300171X/pdfft?md5=2de0c5e6466437a9fcf6ac0691e6f9d0&pid=1-s2.0-S266652392300171X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The potentials of LiMnPO4 cathode material for aqueous Li-ion batteries: An investigation into solid state and green chemistry approaches\",\"authors\":\"Iheke Michael Nwachukwu ,&nbsp;Assumpta Chinwe Nwanya ,&nbsp;A.B.C. Ekwealor ,&nbsp;Fabian I. Ezema\",\"doi\":\"10.1016/j.apsadv.2023.100537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The phospho-olivine LiMnPO<sub>4</sub> nanocrystal holds promise as a cathode material for next-generation Li-ion batteries (LIBs). In this study, we employed solid-state and green chemistry approaches to prepare LiMnPO<sub>4</sub> powders, with aloe vera extract serving as a capping agent for the latter approach. Selective synthesis of nanoparticles with more active sites for efficient Li<sup>+</sup> intercalation-deintercalation was achieved. The phase purity, morphology, and composition of the nanoparticles were characterized using XRD, SEM/TEM, and EDS, respectively. Electrochemical performance was evaluated through cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) in an aqueous environment. The solid-state synthesized LiMnPO<sub>4</sub> nanoparticles (LiMnPO<sub>4</sub>-SS) exhibited electrolyte-dependent performance but demonstrated good reversibility of Li<sup>+</sup> extraction and insertion. Specific capacity, retention of discharge capacity, and Coulombic efficiency were found to be 92.3 ± 0.5 mAhg<sup>−1</sup>, 98 %, and 93 %, respectively, after 50 cycles at 0.2 C. Additionally, energy density was measured as 15.8 ± 1.4 Whkg<sup>−1</sup> at 189.2 ± 1.9 Wkg<sup>−1</sup> power density. The green-synthesized LiMnPO<sub>4</sub> nanoparticles (LiMnPO<sub>4</sub>-GS) showed a specific capacity of 106.4 ± 0.9 mAhg<sup>−1</sup> (corresponding to ∼62 % of theoretical capacity) after 50 cycles, with capacity retention of ∼97 % and ∼80 % Coulombic efficiency. The energy density was 18.2 ± 1.7 Whkg<sup>−1</sup> at 218.1 ± 2.1 Wkg<sup>−1</sup> power density. EIS measurements indicated reduced charge transfer resistance for LiMnPO<sub>4</sub>-GS, optimizing interfacial electrochemical reaction activity. The observed regular micromorphology and (200) plane of nanosized LiMnPO<sub>4</sub> contributed to the excellent electrochemical performance. Overall, this investigation highlights the correlation among synthesis method, calcination temperature, electrolyte, crystal structure, and morphology, providing insights for the design of next-generation LIBs.</p></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266652392300171X/pdfft?md5=2de0c5e6466437a9fcf6ac0691e6f9d0&pid=1-s2.0-S266652392300171X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266652392300171X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266652392300171X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

磷寡晶锰酸锂纳米晶体有望成为下一代锂离子电池(LIB)的阴极材料。在本研究中,我们采用固态和绿色化学方法制备了 LiMnPO4 粉末,并以芦荟提取物作为后一种方法的封端剂。我们选择性地合成了具有更多活性位点的纳米粒子,从而实现了高效的 Li+ 插层-插层。分别使用 XRD、SEM/TEM 和 EDS 对纳米粒子的相纯度、形貌和成分进行了表征。在水环境中,通过循环伏安法、电静态充放电法和电化学阻抗谱法(EIS)对电化学性能进行了评估。固态合成的 LiMnPO4 纳米粒子(LiMnPO4-SS)的性能与电解质有关,但 Li+ 的提取和插入具有良好的可逆性。此外,在功率密度为 189.2 ± 1.9 Wkg-1 时,能量密度测定为 15.8 ± 1.4 Whkg-1。绿色合成的 LiMnPO4 纳米粒子(LiMnPO4-GS)在循环 50 次后,比容量为 106.4 ± 0.9 mAhg-1(相当于理论容量的 62%),容量保持率为 97%,库仑效率为 80%。能量密度为 18.2 ± 1.7 Whkg-1,功率密度为 218.1 ± 2.1 Wkg-1。EIS 测量表明,LiMnPO4-GS 的电荷转移电阻减小,优化了界面电化学反应活性。观察到的纳米级 LiMnPO4 的规则微观形貌和 (200) 平面为其优异的电化学性能做出了贡献。总之,这项研究强调了合成方法、煅烧温度、电解质、晶体结构和形貌之间的相关性,为下一代锂离子电池的设计提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The potentials of LiMnPO4 cathode material for aqueous Li-ion batteries: An investigation into solid state and green chemistry approaches

The phospho-olivine LiMnPO4 nanocrystal holds promise as a cathode material for next-generation Li-ion batteries (LIBs). In this study, we employed solid-state and green chemistry approaches to prepare LiMnPO4 powders, with aloe vera extract serving as a capping agent for the latter approach. Selective synthesis of nanoparticles with more active sites for efficient Li+ intercalation-deintercalation was achieved. The phase purity, morphology, and composition of the nanoparticles were characterized using XRD, SEM/TEM, and EDS, respectively. Electrochemical performance was evaluated through cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) in an aqueous environment. The solid-state synthesized LiMnPO4 nanoparticles (LiMnPO4-SS) exhibited electrolyte-dependent performance but demonstrated good reversibility of Li+ extraction and insertion. Specific capacity, retention of discharge capacity, and Coulombic efficiency were found to be 92.3 ± 0.5 mAhg−1, 98 %, and 93 %, respectively, after 50 cycles at 0.2 C. Additionally, energy density was measured as 15.8 ± 1.4 Whkg−1 at 189.2 ± 1.9 Wkg−1 power density. The green-synthesized LiMnPO4 nanoparticles (LiMnPO4-GS) showed a specific capacity of 106.4 ± 0.9 mAhg−1 (corresponding to ∼62 % of theoretical capacity) after 50 cycles, with capacity retention of ∼97 % and ∼80 % Coulombic efficiency. The energy density was 18.2 ± 1.7 Whkg−1 at 218.1 ± 2.1 Wkg−1 power density. EIS measurements indicated reduced charge transfer resistance for LiMnPO4-GS, optimizing interfacial electrochemical reaction activity. The observed regular micromorphology and (200) plane of nanosized LiMnPO4 contributed to the excellent electrochemical performance. Overall, this investigation highlights the correlation among synthesis method, calcination temperature, electrolyte, crystal structure, and morphology, providing insights for the design of next-generation LIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
期刊最新文献
Performance analysis of turning operation parameters empirically on Delrin Surface Engineered 2D Materials based Platforms for Advanced Technologies The essential synergy between experiments and theory in applied surface science Manufacturing and properties characterization of Ti patterned coatings for water electrolyzers by CSAM Exploring the role of edges in surface functionalization and stability of plasma-modified carbon materials: Experimental and DFT insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1