用于平衡硫自由基稳定性和活性的溶解金属复合物

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2024-08-01 DOI:10.1016/j.esci.2023.100225
{"title":"用于平衡硫自由基稳定性和活性的溶解金属复合物","authors":"","doi":"10.1016/j.esci.2023.100225","DOIUrl":null,"url":null,"abstract":"<div><p>Free radicals can improve the reaction rate, but most of them are unstable due to unpaired electrons. Simultaneously maintaining their stability and activity is challenging. Herein, taking sulfur (S) radicals as an example, we propose a strategy in which solvated metal complexes constructed by Al(acetylacetonate)<sub>3</sub> and different solvents can stabilize high concentrations of S radicals with good activity through ion–dipole interactions. Based on this strategy, it is first demonstrated that <span><math><mrow><msup><msub><mi>S</mi><mn>4</mn></msub><mrow><mo>·</mo><mo>−</mo></mrow></msup></mrow></math></span> is selectively stabilized by controlling the configurations of the solvated complexes. As a result, the reaction rate of S↔Li<sub>2</sub>S is increased by 8 times, and the energy efficiency and rate capability of the Li–S batteries are significantly improved, especially the 5-fold increase in cell capacities at a low electrolyte/sulfur ratio. This work provides an important strategy in which solvated metal complexes balance the activity and stability of free radicals to accelerate reactions and their application in various fields.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 4","pages":"Article 100225"},"PeriodicalIF":42.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001799/pdfft?md5=2d5636343dc46a87bc486a43f09a65f2&pid=1-s2.0-S2667141723001799-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Solvated metal complexes for balancing stability and activity of sulfur free radicals\",\"authors\":\"\",\"doi\":\"10.1016/j.esci.2023.100225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Free radicals can improve the reaction rate, but most of them are unstable due to unpaired electrons. Simultaneously maintaining their stability and activity is challenging. Herein, taking sulfur (S) radicals as an example, we propose a strategy in which solvated metal complexes constructed by Al(acetylacetonate)<sub>3</sub> and different solvents can stabilize high concentrations of S radicals with good activity through ion–dipole interactions. Based on this strategy, it is first demonstrated that <span><math><mrow><msup><msub><mi>S</mi><mn>4</mn></msub><mrow><mo>·</mo><mo>−</mo></mrow></msup></mrow></math></span> is selectively stabilized by controlling the configurations of the solvated complexes. As a result, the reaction rate of S↔Li<sub>2</sub>S is increased by 8 times, and the energy efficiency and rate capability of the Li–S batteries are significantly improved, especially the 5-fold increase in cell capacities at a low electrolyte/sulfur ratio. This work provides an important strategy in which solvated metal complexes balance the activity and stability of free radicals to accelerate reactions and their application in various fields.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"4 4\",\"pages\":\"Article 100225\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667141723001799/pdfft?md5=2d5636343dc46a87bc486a43f09a65f2&pid=1-s2.0-S2667141723001799-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723001799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

自由基可以提高反应速度,但由于其电子不配对,大多数自由基都不稳定。同时保持自由基的稳定性和活性具有挑战性。在此,我们以硫(S)自由基为例,提出了一种策略,即由乙酰丙酮铝(Al(acetylacetonate)3)和不同溶剂构建的溶解金属配合物可以通过离子-偶极子相互作用稳定高浓度的 S 自由基,并使其具有良好的活性。基于这种策略,研究人员首次证明,通过控制溶解络合物的构型,可以选择性地稳定 S4--。因此,S↔Li2S 的反应速率提高了 8 倍,锂-S 电池的能量效率和速率能力得到显著提高,尤其是在低电解质/硫比条件下,电池容量提高了 5 倍。这项工作提供了一种重要的策略,即溶解金属复合物可以平衡自由基的活性和稳定性,从而加速反应并将其应用于各个领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solvated metal complexes for balancing stability and activity of sulfur free radicals

Free radicals can improve the reaction rate, but most of them are unstable due to unpaired electrons. Simultaneously maintaining their stability and activity is challenging. Herein, taking sulfur (S) radicals as an example, we propose a strategy in which solvated metal complexes constructed by Al(acetylacetonate)3 and different solvents can stabilize high concentrations of S radicals with good activity through ion–dipole interactions. Based on this strategy, it is first demonstrated that S4· is selectively stabilized by controlling the configurations of the solvated complexes. As a result, the reaction rate of S↔Li2S is increased by 8 times, and the energy efficiency and rate capability of the Li–S batteries are significantly improved, especially the 5-fold increase in cell capacities at a low electrolyte/sulfur ratio. This work provides an important strategy in which solvated metal complexes balance the activity and stability of free radicals to accelerate reactions and their application in various fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1