{"title":"近距离观察脂质双分子层中的热量测定下转变","authors":"Sophia A. Korono, John F. Nagle","doi":"10.1016/j.chemphyslip.2023.105366","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal behavior of unilamellar vesicles has been revisited with differential scanning calorimetry to address the issue of whether it is essential to include interactions between neighboring bilayers in theories and simulations of the ripple phase. The issue focuses on the lower, <em>aka</em> pretransition, and the ripple phase that clearly exists between the lower and main transitions in multilamellar vesicles (MLV). We find anomalous thermal behavior in unilamellar vesicles (ULV) beginning at the same temperature as the lower transition in MLVs, but this feature is considerably broadened and somewhat weaker compared to the lower transition in MLVs. We ascribe this to the difficulty of packing a regular ripple pattern on small spheres. In agreement with a few reports of a ripple phase in direct images of single bilayers, we conclude that interactions between neighboring bilayers are not essential for the ripple phase in lipid bilayers.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308423000889/pdfft?md5=40ff883edcd280818ebff926ab6c6002&pid=1-s2.0-S0009308423000889-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Closer look at the calorimetric lower transition in lipid bilayers\",\"authors\":\"Sophia A. Korono, John F. Nagle\",\"doi\":\"10.1016/j.chemphyslip.2023.105366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thermal behavior of unilamellar vesicles has been revisited with differential scanning calorimetry to address the issue of whether it is essential to include interactions between neighboring bilayers in theories and simulations of the ripple phase. The issue focuses on the lower, <em>aka</em> pretransition, and the ripple phase that clearly exists between the lower and main transitions in multilamellar vesicles (MLV). We find anomalous thermal behavior in unilamellar vesicles (ULV) beginning at the same temperature as the lower transition in MLVs, but this feature is considerably broadened and somewhat weaker compared to the lower transition in MLVs. We ascribe this to the difficulty of packing a regular ripple pattern on small spheres. In agreement with a few reports of a ripple phase in direct images of single bilayers, we conclude that interactions between neighboring bilayers are not essential for the ripple phase in lipid bilayers.</p></div>\",\"PeriodicalId\":275,\"journal\":{\"name\":\"Chemistry and Physics of Lipids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0009308423000889/pdfft?md5=40ff883edcd280818ebff926ab6c6002&pid=1-s2.0-S0009308423000889-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry and Physics of Lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009308423000889\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308423000889","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Closer look at the calorimetric lower transition in lipid bilayers
The thermal behavior of unilamellar vesicles has been revisited with differential scanning calorimetry to address the issue of whether it is essential to include interactions between neighboring bilayers in theories and simulations of the ripple phase. The issue focuses on the lower, aka pretransition, and the ripple phase that clearly exists between the lower and main transitions in multilamellar vesicles (MLV). We find anomalous thermal behavior in unilamellar vesicles (ULV) beginning at the same temperature as the lower transition in MLVs, but this feature is considerably broadened and somewhat weaker compared to the lower transition in MLVs. We ascribe this to the difficulty of packing a regular ripple pattern on small spheres. In agreement with a few reports of a ripple phase in direct images of single bilayers, we conclude that interactions between neighboring bilayers are not essential for the ripple phase in lipid bilayers.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.