不同抛光液条件下固定研磨垫的摩擦学上釉演变

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL Industrial Lubrication and Tribology Pub Date : 2023-12-12 DOI:10.1108/ilt-08-2023-0257
Changliu Tian, Yabo Wu, Minghua Pang, Zhankui Wang
{"title":"不同抛光液条件下固定研磨垫的摩擦学上釉演变","authors":"Changliu Tian, Yabo Wu, Minghua Pang, Zhankui Wang","doi":"10.1108/ilt-08-2023-0257","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to clarify the influence mechanism of polishing solution type on the glazing evolution of fixed abrasive pad under different interfacial pressure conditions.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The tribological experiments were carried out on the friction and wear machinery with W3-5 diamond fixed abrasive pad and quartz glass workpiece under three polishing solution types of five pressure conditions. The changes of surface morphology, porosity and hardness of fixed abrasive pad were detected by white light interferometer, optical microscope and shore hardness tester.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results showed that the glazed phenomenon of fixed abrasive pad is occurred after a certain time, which is more obvious with the increasing of interfacial pressures. The polishing solution type has a significant effect on the glazing time, although the glazed phenomenon is inevitable. The mechanism of it is that the micro-convex peaks on the surface of the fixed abrasive pad are easily wear, and the pores are blocked by the accumulation of waste debris generated during the experiment process. Thus, a smooth and high-density hard layer is formed on the surface of the fixed abrasive pad which induces the decreasing of the friction coefficient and surface roughness value. For selected polishing solution types, the wear rate of micro-convex peaks is different due to the corrosion action difference with polishing pad surface.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The main contribution of this work is to provide a new investigating method for further understanding the glazing evolution mechanism of fixed abrasive pad.</p><!--/ Abstract__block -->\n<h3>Peer review</h3>\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0257/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"4 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribological glazing evolution of fixed abrasive pad under different polishing solution conditions\",\"authors\":\"Changliu Tian, Yabo Wu, Minghua Pang, Zhankui Wang\",\"doi\":\"10.1108/ilt-08-2023-0257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This study aims to clarify the influence mechanism of polishing solution type on the glazing evolution of fixed abrasive pad under different interfacial pressure conditions.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The tribological experiments were carried out on the friction and wear machinery with W3-5 diamond fixed abrasive pad and quartz glass workpiece under three polishing solution types of five pressure conditions. The changes of surface morphology, porosity and hardness of fixed abrasive pad were detected by white light interferometer, optical microscope and shore hardness tester.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The results showed that the glazed phenomenon of fixed abrasive pad is occurred after a certain time, which is more obvious with the increasing of interfacial pressures. The polishing solution type has a significant effect on the glazing time, although the glazed phenomenon is inevitable. The mechanism of it is that the micro-convex peaks on the surface of the fixed abrasive pad are easily wear, and the pores are blocked by the accumulation of waste debris generated during the experiment process. Thus, a smooth and high-density hard layer is formed on the surface of the fixed abrasive pad which induces the decreasing of the friction coefficient and surface roughness value. For selected polishing solution types, the wear rate of micro-convex peaks is different due to the corrosion action difference with polishing pad surface.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The main contribution of this work is to provide a new investigating method for further understanding the glazing evolution mechanism of fixed abrasive pad.</p><!--/ Abstract__block -->\\n<h3>Peer review</h3>\\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0257/</p><!--/ Abstract__block -->\",\"PeriodicalId\":13523,\"journal\":{\"name\":\"Industrial Lubrication and Tribology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Lubrication and Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ilt-08-2023-0257\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Lubrication and Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-08-2023-0257","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

设计/方法/途径 在三种抛光液、五种压力条件下,对 W3-5 金刚石固定研磨垫和石英玻璃工件的摩擦磨损机械进行了摩擦学实验。结果表明,固定磨片在使用一定时间后会出现釉化现象,随着界面压力的增加,釉化现象更加明显。抛光液类型对上釉时间有显著影响,但上釉现象不可避免。其机理是固定研磨垫表面的微凸峰容易磨损,实验过程中产生的废屑堆积堵塞了孔隙。因此,固定研磨垫表面形成了光滑的高密度硬层,从而导致摩擦系数和表面粗糙度值降低。对于选定的抛光液类型,由于与抛光垫表面的腐蚀作用不同,微凸峰的磨损率也不同。原创性/价值这项工作的主要贡献是提供了一种新的研究方法,有助于进一步了解固定研磨垫的釉面演变机理。同行评议本文的同行评议记录可在以下网址查阅:https://publons.com/publon/10.1108/ILT-08-2023-0257/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tribological glazing evolution of fixed abrasive pad under different polishing solution conditions

Purpose

This study aims to clarify the influence mechanism of polishing solution type on the glazing evolution of fixed abrasive pad under different interfacial pressure conditions.

Design/methodology/approach

The tribological experiments were carried out on the friction and wear machinery with W3-5 diamond fixed abrasive pad and quartz glass workpiece under three polishing solution types of five pressure conditions. The changes of surface morphology, porosity and hardness of fixed abrasive pad were detected by white light interferometer, optical microscope and shore hardness tester.

Findings

The results showed that the glazed phenomenon of fixed abrasive pad is occurred after a certain time, which is more obvious with the increasing of interfacial pressures. The polishing solution type has a significant effect on the glazing time, although the glazed phenomenon is inevitable. The mechanism of it is that the micro-convex peaks on the surface of the fixed abrasive pad are easily wear, and the pores are blocked by the accumulation of waste debris generated during the experiment process. Thus, a smooth and high-density hard layer is formed on the surface of the fixed abrasive pad which induces the decreasing of the friction coefficient and surface roughness value. For selected polishing solution types, the wear rate of micro-convex peaks is different due to the corrosion action difference with polishing pad surface.

Originality/value

The main contribution of this work is to provide a new investigating method for further understanding the glazing evolution mechanism of fixed abrasive pad.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0257/

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Lubrication and Tribology
Industrial Lubrication and Tribology 工程技术-工程:机械
CiteScore
3.00
自引率
18.80%
发文量
129
审稿时长
1.9 months
期刊介绍: Industrial Lubrication and Tribology provides a broad coverage of the materials and techniques employed in tribology. It contains a firm technical news element which brings together and promotes best practice in the three disciplines of tribology, which comprise lubrication, wear and friction. ILT also follows the progress of research into advanced lubricants, bearings, seals, gears and related machinery parts, as well as materials selection. A double-blind peer review process involving the editor and other subject experts ensures the content''s validity and relevance.
期刊最新文献
Effect of elastic deformation on squeezing film lubrication properties of soft tribocontacts with microstructured surface Optimization of high-speed reducer in electric vehicle based on analysis of lubrication Movement behavior of oil droplet on porous surfaces under the influence of orifice structure Simulation and mechanism analysis of fretting wear of parallel groove clamps in distribution networks caused by Karman vortex vibration Influence of surface texture on pocket pairs lubrication performance of cylindrical roller bearings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1