{"title":"行走装置结构对轻型高机动性履带式无人潜航器克服障碍的影响","authors":"Daniela Szpaczyńska, Marian Łopatka, Piotr Krogul","doi":"10.1016/j.jterra.2023.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Rubber tracked running gears are widely used in high-mobility Unmanned Ground Vehicles (UGV) to increase obstacle negotiation possibility in urban and rural terrain. The paper proposes a method of assessing the mobility level of the light UGV‘s tracked running gears in terms of their ability to overcome terrain obstacles. A model of rubber track system was created in the MSC ADAMS environment. A track-ground contact was also modeled, defining the traction force based on the Wong equations. For four different chassis models (rigid construction, bogies solution – rigid and elastically mounted to the frame and rocker-bogie construction), with two track tension variants, the ability to overcome five terrain obstacles was checked, taking into account three different types of soil. The solutions were accessed on the basis of parameters of general efficiency of overcoming obstacles, driving force and slip values, as well as the distribution of track pressures on the ground. The best solutions for each criterion were indicated. The simulation results showed an improvement in the driving properties with the use of elastically suspended elements. The results also emphasized the negative impact of increased track tension on overcoming obstacles and the impact of ground characteristics on the slip values of the running gear.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The running gear construction impact on overcoming obstacles by light high-mobility tracked UGV\",\"authors\":\"Daniela Szpaczyńska, Marian Łopatka, Piotr Krogul\",\"doi\":\"10.1016/j.jterra.2023.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rubber tracked running gears are widely used in high-mobility Unmanned Ground Vehicles (UGV) to increase obstacle negotiation possibility in urban and rural terrain. The paper proposes a method of assessing the mobility level of the light UGV‘s tracked running gears in terms of their ability to overcome terrain obstacles. A model of rubber track system was created in the MSC ADAMS environment. A track-ground contact was also modeled, defining the traction force based on the Wong equations. For four different chassis models (rigid construction, bogies solution – rigid and elastically mounted to the frame and rocker-bogie construction), with two track tension variants, the ability to overcome five terrain obstacles was checked, taking into account three different types of soil. The solutions were accessed on the basis of parameters of general efficiency of overcoming obstacles, driving force and slip values, as well as the distribution of track pressures on the ground. The best solutions for each criterion were indicated. The simulation results showed an improvement in the driving properties with the use of elastically suspended elements. The results also emphasized the negative impact of increased track tension on overcoming obstacles and the impact of ground characteristics on the slip values of the running gear.</p></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489823000903\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489823000903","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
The running gear construction impact on overcoming obstacles by light high-mobility tracked UGV
Rubber tracked running gears are widely used in high-mobility Unmanned Ground Vehicles (UGV) to increase obstacle negotiation possibility in urban and rural terrain. The paper proposes a method of assessing the mobility level of the light UGV‘s tracked running gears in terms of their ability to overcome terrain obstacles. A model of rubber track system was created in the MSC ADAMS environment. A track-ground contact was also modeled, defining the traction force based on the Wong equations. For four different chassis models (rigid construction, bogies solution – rigid and elastically mounted to the frame and rocker-bogie construction), with two track tension variants, the ability to overcome five terrain obstacles was checked, taking into account three different types of soil. The solutions were accessed on the basis of parameters of general efficiency of overcoming obstacles, driving force and slip values, as well as the distribution of track pressures on the ground. The best solutions for each criterion were indicated. The simulation results showed an improvement in the driving properties with the use of elastically suspended elements. The results also emphasized the negative impact of increased track tension on overcoming obstacles and the impact of ground characteristics on the slip values of the running gear.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.