多层非互惠苏-施里弗-黑格尔结构中依赖奇偶性的集肤效应和拓扑特性

IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Frontiers of Physics Pub Date : 2023-12-11 DOI:10.1007/s11467-023-1350-y
Jia-Rui Li, Cui Jiang, Han Su, Di Qi, Lian-Lian Zhang, Wei-Jiang Gong
{"title":"多层非互惠苏-施里弗-黑格尔结构中依赖奇偶性的集肤效应和拓扑特性","authors":"Jia-Rui Li,&nbsp;Cui Jiang,&nbsp;Han Su,&nbsp;Di Qi,&nbsp;Lian-Lian Zhang,&nbsp;Wei-Jiang Gong","doi":"10.1007/s11467-023-1350-y","DOIUrl":null,"url":null,"abstract":"<div><p>We concentrate on the skin effects and topological properties in the multilayer non-Hermitian Su–Schrieffer–Heeger (SSH) structure, by taking into account the nonreciprocal couplings between the different sublattices in the unit cells. Following the detailed demonstration of the theoretical method, we find that in this system, the skin effects and topological phase transitions induced by nonreciprocal couplings display the apparent parity effect, following the increase of the layer number of this SSH structure. On the one hand, the skin effect is determined by the parity of the layer number of this SSH system, as well as the parity of the band index of the bulk states. On the other hand, for the topological edge modes, such an interesting parity effect can also be observed clearly. Next, when the parameter disorders are taken into account, the zero-energy edge modes in the odd-layer structures tend to be more robust, whereas the other edge modes are easy to be destroyed. In view of these results, it can be ascertained that the findings in this work promote to understand the influences of nonreciprocal couplings on the skin effects and topological properties in the multilayer SSH lattices.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 3","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parity-dependent skin effects and topological properties in the multilayer nonreciprocal Su–Schrieffer–Heeger structures\",\"authors\":\"Jia-Rui Li,&nbsp;Cui Jiang,&nbsp;Han Su,&nbsp;Di Qi,&nbsp;Lian-Lian Zhang,&nbsp;Wei-Jiang Gong\",\"doi\":\"10.1007/s11467-023-1350-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We concentrate on the skin effects and topological properties in the multilayer non-Hermitian Su–Schrieffer–Heeger (SSH) structure, by taking into account the nonreciprocal couplings between the different sublattices in the unit cells. Following the detailed demonstration of the theoretical method, we find that in this system, the skin effects and topological phase transitions induced by nonreciprocal couplings display the apparent parity effect, following the increase of the layer number of this SSH structure. On the one hand, the skin effect is determined by the parity of the layer number of this SSH system, as well as the parity of the band index of the bulk states. On the other hand, for the topological edge modes, such an interesting parity effect can also be observed clearly. Next, when the parameter disorders are taken into account, the zero-energy edge modes in the odd-layer structures tend to be more robust, whereas the other edge modes are easy to be destroyed. In view of these results, it can be ascertained that the findings in this work promote to understand the influences of nonreciprocal couplings on the skin effects and topological properties in the multilayer SSH lattices.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":573,\"journal\":{\"name\":\"Frontiers of Physics\",\"volume\":\"19 3\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11467-023-1350-y\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1350-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过考虑单元格中不同子晶格之间的非互易耦合,我们集中研究了多层非ermitian Su-Schrieffer-Heeger (SSH) 结构中的集肤效应和拓扑特性。通过对理论方法的详细论证,我们发现在该系统中,随着 SSH 结构层数的增加,由非互易耦合诱发的集肤效应和拓扑相变显示出明显的奇偶效应。一方面,趋肤效应是由该 SSH 系统层数的奇偶性以及体态带指数的奇偶性决定的。另一方面,对于拓扑边缘模式,也可以清楚地观察到这种有趣的奇偶效应。其次,当考虑到参数紊乱时,奇数层结构中的零能边缘模趋于更稳健,而其他边缘模则容易被破坏。鉴于这些结果,可以确定本研究的发现有助于理解非互易耦合对多层 SSH 晶格的集肤效应和拓扑性质的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parity-dependent skin effects and topological properties in the multilayer nonreciprocal Su–Schrieffer–Heeger structures

We concentrate on the skin effects and topological properties in the multilayer non-Hermitian Su–Schrieffer–Heeger (SSH) structure, by taking into account the nonreciprocal couplings between the different sublattices in the unit cells. Following the detailed demonstration of the theoretical method, we find that in this system, the skin effects and topological phase transitions induced by nonreciprocal couplings display the apparent parity effect, following the increase of the layer number of this SSH structure. On the one hand, the skin effect is determined by the parity of the layer number of this SSH system, as well as the parity of the band index of the bulk states. On the other hand, for the topological edge modes, such an interesting parity effect can also be observed clearly. Next, when the parameter disorders are taken into account, the zero-energy edge modes in the odd-layer structures tend to be more robust, whereas the other edge modes are easy to be destroyed. In view of these results, it can be ascertained that the findings in this work promote to understand the influences of nonreciprocal couplings on the skin effects and topological properties in the multilayer SSH lattices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Physics
Frontiers of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
9.20
自引率
9.30%
发文量
898
审稿时长
6-12 weeks
期刊介绍: Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include: Quantum computation and quantum information Atomic, molecular, and optical physics Condensed matter physics, material sciences, and interdisciplinary research Particle, nuclear physics, astrophysics, and cosmology The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.
期刊最新文献
Erratum to: Noisy intermediate-scale quantum computers Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters Bayesian method for fitting the low-energy constants in chiral perturbation theory Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1