Annabel R. Bugbird , Rachel E. Klassen , Olivia L. Bruce , Lauren A. Burt , W. Brent Edwards , Steven K. Boyd
{"title":"高分辨率外周定量计算机断层扫描的扫描固定和相对定位","authors":"Annabel R. Bugbird , Rachel E. Klassen , Olivia L. Bruce , Lauren A. Burt , W. Brent Edwards , Steven K. Boyd","doi":"10.1016/j.jocd.2023.101462","DOIUrl":null,"url":null,"abstract":"<div><p><em>Introduction</em><span>: High resolution peripheral quantitative computed tomography (HR-pQCT) imaging protocol requires defining where to position the ∼1 cm thick scan along the bone length. Discrepancies between the use of two positioning methods, the relative and fixed offset, may be problematic in the comparison between studies and participants. This study investigated how bone landmarks scale linearly with length and how this scaling affects both positioning methods aimed at providing a consistent anatomical location for scan acquisition.</span></p><p><em>Methods</em>: Using CT images of the radius (<em>N</em><span> = 25) and tibia (</span><em>N</em><span> = 42), 10 anatomical landmarks were selected along the bone length. The location of these landmarks was converted to a percent length along the bone, and the variation in their location was evaluated across the dataset. The absolute location of the HR-pQCT scan position using both offset methods was identified for all bones and converted to a percent length position relative to the HR-pQCT reference line for comparison. A secondary analysis of the location of the scan region specifically within the metaphysis was explored at the tibia.</span></p><p><em>Results</em><span>: The location of landmarks deviated from a linear relationship across the dataset, with a range of 3.6 % at the radius sites, and 4.5 % at the tibia sites. The consequent variation of the position of the scan at the radius was 0.6 % and 0.3 %, and at the tibia 2.4 % and 0.5 %, for the fixed and relative offset, respectively. The position of the metaphyseal junction with the epiphysis relative to the scan position was poorly correlated to bone length, with </span><em>R</em><sup>2</sup> = 0.06 and 0.37, for the fixed and relative offset respectively.</p><p><em>Conclusion</em><span>: The variation of the scan position by either method is negated by the intrinsic variation of the bone anatomy with respect both to total bone length as well as the metaphyseal region. Therefore, there is no clear benefit of either offset method. However, the lack of difference due to the inherent variation in the underlying anatomy implies that it is reasonable to compare studies even if they are using different positioning methods.</span></p></div>","PeriodicalId":50240,"journal":{"name":"Journal of Clinical Densitometry","volume":"27 1","pages":"Article 101462"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed and Relative Positioning of Scans for High Resolution Peripheral Quantitative Computed Tomography\",\"authors\":\"Annabel R. Bugbird , Rachel E. Klassen , Olivia L. Bruce , Lauren A. Burt , W. Brent Edwards , Steven K. Boyd\",\"doi\":\"10.1016/j.jocd.2023.101462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Introduction</em><span>: High resolution peripheral quantitative computed tomography (HR-pQCT) imaging protocol requires defining where to position the ∼1 cm thick scan along the bone length. Discrepancies between the use of two positioning methods, the relative and fixed offset, may be problematic in the comparison between studies and participants. This study investigated how bone landmarks scale linearly with length and how this scaling affects both positioning methods aimed at providing a consistent anatomical location for scan acquisition.</span></p><p><em>Methods</em>: Using CT images of the radius (<em>N</em><span> = 25) and tibia (</span><em>N</em><span> = 42), 10 anatomical landmarks were selected along the bone length. The location of these landmarks was converted to a percent length along the bone, and the variation in their location was evaluated across the dataset. The absolute location of the HR-pQCT scan position using both offset methods was identified for all bones and converted to a percent length position relative to the HR-pQCT reference line for comparison. A secondary analysis of the location of the scan region specifically within the metaphysis was explored at the tibia.</span></p><p><em>Results</em><span>: The location of landmarks deviated from a linear relationship across the dataset, with a range of 3.6 % at the radius sites, and 4.5 % at the tibia sites. The consequent variation of the position of the scan at the radius was 0.6 % and 0.3 %, and at the tibia 2.4 % and 0.5 %, for the fixed and relative offset, respectively. The position of the metaphyseal junction with the epiphysis relative to the scan position was poorly correlated to bone length, with </span><em>R</em><sup>2</sup> = 0.06 and 0.37, for the fixed and relative offset respectively.</p><p><em>Conclusion</em><span>: The variation of the scan position by either method is negated by the intrinsic variation of the bone anatomy with respect both to total bone length as well as the metaphyseal region. Therefore, there is no clear benefit of either offset method. However, the lack of difference due to the inherent variation in the underlying anatomy implies that it is reasonable to compare studies even if they are using different positioning methods.</span></p></div>\",\"PeriodicalId\":50240,\"journal\":{\"name\":\"Journal of Clinical Densitometry\",\"volume\":\"27 1\",\"pages\":\"Article 101462\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Densitometry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1094695023001129\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Densitometry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094695023001129","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Fixed and Relative Positioning of Scans for High Resolution Peripheral Quantitative Computed Tomography
Introduction: High resolution peripheral quantitative computed tomography (HR-pQCT) imaging protocol requires defining where to position the ∼1 cm thick scan along the bone length. Discrepancies between the use of two positioning methods, the relative and fixed offset, may be problematic in the comparison between studies and participants. This study investigated how bone landmarks scale linearly with length and how this scaling affects both positioning methods aimed at providing a consistent anatomical location for scan acquisition.
Methods: Using CT images of the radius (N = 25) and tibia (N = 42), 10 anatomical landmarks were selected along the bone length. The location of these landmarks was converted to a percent length along the bone, and the variation in their location was evaluated across the dataset. The absolute location of the HR-pQCT scan position using both offset methods was identified for all bones and converted to a percent length position relative to the HR-pQCT reference line for comparison. A secondary analysis of the location of the scan region specifically within the metaphysis was explored at the tibia.
Results: The location of landmarks deviated from a linear relationship across the dataset, with a range of 3.6 % at the radius sites, and 4.5 % at the tibia sites. The consequent variation of the position of the scan at the radius was 0.6 % and 0.3 %, and at the tibia 2.4 % and 0.5 %, for the fixed and relative offset, respectively. The position of the metaphyseal junction with the epiphysis relative to the scan position was poorly correlated to bone length, with R2 = 0.06 and 0.37, for the fixed and relative offset respectively.
Conclusion: The variation of the scan position by either method is negated by the intrinsic variation of the bone anatomy with respect both to total bone length as well as the metaphyseal region. Therefore, there is no clear benefit of either offset method. However, the lack of difference due to the inherent variation in the underlying anatomy implies that it is reasonable to compare studies even if they are using different positioning methods.
期刊介绍:
The Journal is committed to serving ISCD''s mission - the education of heterogenous physician specialties and technologists who are involved in the clinical assessment of skeletal health. The focus of JCD is bone mass measurement, including epidemiology of bone mass, how drugs and diseases alter bone mass, new techniques and quality assurance in bone mass imaging technologies, and bone mass health/economics.
Combining high quality research and review articles with sound, practice-oriented advice, JCD meets the diverse diagnostic and management needs of radiologists, endocrinologists, nephrologists, rheumatologists, gynecologists, family physicians, internists, and technologists whose patients require diagnostic clinical densitometry for therapeutic management.