Amir Hemmati, Mohammad Mahdavi, Hamid Emadi, Seyed Reza Nabavi
{"title":"硫氰酸盐功能化碳量子点的绿色合成,作为快速灵敏的抗坏血酸检测荧光探针","authors":"Amir Hemmati, Mohammad Mahdavi, Hamid Emadi, Seyed Reza Nabavi","doi":"10.1007/s12039-023-02235-5","DOIUrl":null,"url":null,"abstract":"<div><p>Thiocyanate functionalized carbon quantum dots (SCN-CDs) were produced via microwave synthesis using tree leaves called feijoa as a green material. The products were analyzed using spectroscopy and microscopy techniques, including high-resolution transmission electron microscopy (HR-TEM), spectrofluorometry, and X-ray photoelectron spectroscopy (XPS). SCN-CDs with blue emissivity were used to detect ascorbic acid (Ascor) in aquatic environments. The selectivity of SCN-CDs was reasonable, and the sensitivity was excellent. Cu(II) interaction with the SCN-CDs <i>via</i> static quenching mechanism leads to the SCN-CDs’ fluorescence (FL) being quenched, and Ascor’s reduction capacity recovers the SCN-CDs/Cu(II) FL, resulting in a switch-off-on sensor for Ascor detection. As a rapid and sensitive turn-on sensor, the limit of detection (LOD) of SCN-CQDs/Cu(II) for Ascor detection was 0.69 µM.</p><h3>Graphical Abstract</h3><p>Ascorbic acid (Ascor) is detected by thiocyanate functionalized carbon dots (SCN-CDs). SCN-CDs fluorescence was quenched by Cu(II) ions, resulting in static quenching, and Ascor recovered the fluorescence of SCN-CDs/Cu(II) by reducing Cu(II) ions to Cu(I) ions. Ascor was detected with a low detection limit (0.69 µM), good selectivity, and fast response.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of thiocyanate functionalized carbon quantum dots as a fast and sensitive turn-on fluorescent probe for ascorbic acid detection\",\"authors\":\"Amir Hemmati, Mohammad Mahdavi, Hamid Emadi, Seyed Reza Nabavi\",\"doi\":\"10.1007/s12039-023-02235-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thiocyanate functionalized carbon quantum dots (SCN-CDs) were produced via microwave synthesis using tree leaves called feijoa as a green material. The products were analyzed using spectroscopy and microscopy techniques, including high-resolution transmission electron microscopy (HR-TEM), spectrofluorometry, and X-ray photoelectron spectroscopy (XPS). SCN-CDs with blue emissivity were used to detect ascorbic acid (Ascor) in aquatic environments. The selectivity of SCN-CDs was reasonable, and the sensitivity was excellent. Cu(II) interaction with the SCN-CDs <i>via</i> static quenching mechanism leads to the SCN-CDs’ fluorescence (FL) being quenched, and Ascor’s reduction capacity recovers the SCN-CDs/Cu(II) FL, resulting in a switch-off-on sensor for Ascor detection. As a rapid and sensitive turn-on sensor, the limit of detection (LOD) of SCN-CQDs/Cu(II) for Ascor detection was 0.69 µM.</p><h3>Graphical Abstract</h3><p>Ascorbic acid (Ascor) is detected by thiocyanate functionalized carbon dots (SCN-CDs). SCN-CDs fluorescence was quenched by Cu(II) ions, resulting in static quenching, and Ascor recovered the fluorescence of SCN-CDs/Cu(II) by reducing Cu(II) ions to Cu(I) ions. Ascor was detected with a low detection limit (0.69 µM), good selectivity, and fast response.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":616,\"journal\":{\"name\":\"Journal of Chemical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12039-023-02235-5\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-023-02235-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Green synthesis of thiocyanate functionalized carbon quantum dots as a fast and sensitive turn-on fluorescent probe for ascorbic acid detection
Thiocyanate functionalized carbon quantum dots (SCN-CDs) were produced via microwave synthesis using tree leaves called feijoa as a green material. The products were analyzed using spectroscopy and microscopy techniques, including high-resolution transmission electron microscopy (HR-TEM), spectrofluorometry, and X-ray photoelectron spectroscopy (XPS). SCN-CDs with blue emissivity were used to detect ascorbic acid (Ascor) in aquatic environments. The selectivity of SCN-CDs was reasonable, and the sensitivity was excellent. Cu(II) interaction with the SCN-CDs via static quenching mechanism leads to the SCN-CDs’ fluorescence (FL) being quenched, and Ascor’s reduction capacity recovers the SCN-CDs/Cu(II) FL, resulting in a switch-off-on sensor for Ascor detection. As a rapid and sensitive turn-on sensor, the limit of detection (LOD) of SCN-CQDs/Cu(II) for Ascor detection was 0.69 µM.
Graphical Abstract
Ascorbic acid (Ascor) is detected by thiocyanate functionalized carbon dots (SCN-CDs). SCN-CDs fluorescence was quenched by Cu(II) ions, resulting in static quenching, and Ascor recovered the fluorescence of SCN-CDs/Cu(II) by reducing Cu(II) ions to Cu(I) ions. Ascor was detected with a low detection limit (0.69 µM), good selectivity, and fast response.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.