Amir Reza Varzandi, Stefania Zanet, Patricia Barroso Seano, Flavia Occhibove, Rachele Vada, Francesco Benatti, Pablo Palencia Mayordomo, Ezio Ferroglio
{"title":"在土壤和浊水样本中检测非洲猪瘟病毒和野猪 eDNA:实现环境监测","authors":"Amir Reza Varzandi, Stefania Zanet, Patricia Barroso Seano, Flavia Occhibove, Rachele Vada, Francesco Benatti, Pablo Palencia Mayordomo, Ezio Ferroglio","doi":"10.1007/s10344-023-01758-z","DOIUrl":null,"url":null,"abstract":"<p>Since 2007, an ongoing African swine fever (ASF) pandemic has significantly impacted Eurasia. Extensive field evidence and modeling confirm the central role of wild boar in ASF epidemiology. To effectively control and eradicate the infection, rapid detection of the ASF virus (ASFV) is crucial for prompt intervention in areas of recent viral introduction or ongoing outbreaks. Environmental DNA (eDNA) is a cost-effective and non-invasive technique that has shown promising results in monitoring animal species and their pathogens and has the potential to be used for wildlife disease surveillance. In this study, we designed and evaluated an eDNA sampling method for highly turbid water and soil samples to detect ASFV and wild boar (<i>Sus scrofa</i>) DNA as a control using qPCR while ensuring biosafety measures and evaluating ASF epidemiology. To validate our method, we obtained samples from La Mandria Regional Park (LMRP) in northwestern Italy, an area free of ASFV, and spiked them in a laboratory setting with an ASFV’s synthetic DNA template. Our findings highlight the potential of eDNA monitoring as a reliable, rapid, and safe method for early detection of ASFV from soil and turbid water samples.</p>","PeriodicalId":51044,"journal":{"name":"European Journal of Wildlife Research","volume":"12 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of African swine fever virus and wild boar eDNA in soil and turbid water samples: towards environmental surveillance\",\"authors\":\"Amir Reza Varzandi, Stefania Zanet, Patricia Barroso Seano, Flavia Occhibove, Rachele Vada, Francesco Benatti, Pablo Palencia Mayordomo, Ezio Ferroglio\",\"doi\":\"10.1007/s10344-023-01758-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Since 2007, an ongoing African swine fever (ASF) pandemic has significantly impacted Eurasia. Extensive field evidence and modeling confirm the central role of wild boar in ASF epidemiology. To effectively control and eradicate the infection, rapid detection of the ASF virus (ASFV) is crucial for prompt intervention in areas of recent viral introduction or ongoing outbreaks. Environmental DNA (eDNA) is a cost-effective and non-invasive technique that has shown promising results in monitoring animal species and their pathogens and has the potential to be used for wildlife disease surveillance. In this study, we designed and evaluated an eDNA sampling method for highly turbid water and soil samples to detect ASFV and wild boar (<i>Sus scrofa</i>) DNA as a control using qPCR while ensuring biosafety measures and evaluating ASF epidemiology. To validate our method, we obtained samples from La Mandria Regional Park (LMRP) in northwestern Italy, an area free of ASFV, and spiked them in a laboratory setting with an ASFV’s synthetic DNA template. Our findings highlight the potential of eDNA monitoring as a reliable, rapid, and safe method for early detection of ASFV from soil and turbid water samples.</p>\",\"PeriodicalId\":51044,\"journal\":{\"name\":\"European Journal of Wildlife Research\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Wildlife Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10344-023-01758-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wildlife Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10344-023-01758-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Detection of African swine fever virus and wild boar eDNA in soil and turbid water samples: towards environmental surveillance
Since 2007, an ongoing African swine fever (ASF) pandemic has significantly impacted Eurasia. Extensive field evidence and modeling confirm the central role of wild boar in ASF epidemiology. To effectively control and eradicate the infection, rapid detection of the ASF virus (ASFV) is crucial for prompt intervention in areas of recent viral introduction or ongoing outbreaks. Environmental DNA (eDNA) is a cost-effective and non-invasive technique that has shown promising results in monitoring animal species and their pathogens and has the potential to be used for wildlife disease surveillance. In this study, we designed and evaluated an eDNA sampling method for highly turbid water and soil samples to detect ASFV and wild boar (Sus scrofa) DNA as a control using qPCR while ensuring biosafety measures and evaluating ASF epidemiology. To validate our method, we obtained samples from La Mandria Regional Park (LMRP) in northwestern Italy, an area free of ASFV, and spiked them in a laboratory setting with an ASFV’s synthetic DNA template. Our findings highlight the potential of eDNA monitoring as a reliable, rapid, and safe method for early detection of ASFV from soil and turbid water samples.
期刊介绍:
European Journal of Wildlife Research focuses on all aspects of wildlife biology. Main areas are: applied wildlife ecology; diseases affecting wildlife population dynamics, conservation, economy or public health; ecotoxicology; management for conservation, hunting or pest control; population genetics; and the sustainable use of wildlife as a natural resource. Contributions to socio-cultural aspects of human-wildlife relationships and to the history and sociology of hunting will also be considered.