钛牙种植体表面种植体周围炎的化学和微结构特征

IF 7.5 Q1 CHEMISTRY, PHYSICAL Applied Surface Science Advances Pub Date : 2023-12-11 DOI:10.1016/j.apsadv.2023.100553
Amit S. Shavit , Daniel Rittel , Keren Shemtov-Yona
{"title":"钛牙种植体表面种植体周围炎的化学和微结构特征","authors":"Amit S. Shavit ,&nbsp;Daniel Rittel ,&nbsp;Keren Shemtov-Yona","doi":"10.1016/j.apsadv.2023.100553","DOIUrl":null,"url":null,"abstract":"<div><p>Titanium and titanium alloys are deemed to be biocompatible materials. But what happens to the biomaterial when the environment and/or the working conditions change? This study aims to identify changes in the surface chemistry and morphology of retrieved titanium dental implants after exposure to the inflammatory conditions that are characteristic of peri-implantitis. The surface of unused (reference) and retrieved dental implants are systematically compared at two distinct scales, namely micron and nano, using high-resolution analysis microscopic methods (SEM, Tof-SIMS and S/TEM).</p><p>At the micron scale, a profusion of (micron-size) metallic particles were observed only on the top area of the retrieved implants. For those implants, significant nanoscale damage to the (protective) oxide layer was observed, consisting of changes in thickness, composition, and atomic arrangement (amorphization), as opposed to that of the reference implants. An organic compound, denoted by CNx, was found to infiltrate the oxide layer, rendering it significantly thicker, porous, and weak with evidence of delamination.</p><p>We present a systematic methodology to study biocompatibility and degradation processes in those implants, exposing unambiguously the severe degradation of the protective oxide layer that should guide further studies aimed at increasing the implants’ resistance to their biological environment.</p><p>The results reported herein do not differentiate between implants of different origins, make and/or patients’ history, so that these results confer a definite generality to the protective layer's degradation related to peri-implantitis.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523923001873/pdfft?md5=2690a92269c940cb1b4b2eb64354a22b&pid=1-s2.0-S2666523923001873-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The chemical and microstructural signature of peri-implantitis on titanium dental implants’ surface\",\"authors\":\"Amit S. Shavit ,&nbsp;Daniel Rittel ,&nbsp;Keren Shemtov-Yona\",\"doi\":\"10.1016/j.apsadv.2023.100553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Titanium and titanium alloys are deemed to be biocompatible materials. But what happens to the biomaterial when the environment and/or the working conditions change? This study aims to identify changes in the surface chemistry and morphology of retrieved titanium dental implants after exposure to the inflammatory conditions that are characteristic of peri-implantitis. The surface of unused (reference) and retrieved dental implants are systematically compared at two distinct scales, namely micron and nano, using high-resolution analysis microscopic methods (SEM, Tof-SIMS and S/TEM).</p><p>At the micron scale, a profusion of (micron-size) metallic particles were observed only on the top area of the retrieved implants. For those implants, significant nanoscale damage to the (protective) oxide layer was observed, consisting of changes in thickness, composition, and atomic arrangement (amorphization), as opposed to that of the reference implants. An organic compound, denoted by CNx, was found to infiltrate the oxide layer, rendering it significantly thicker, porous, and weak with evidence of delamination.</p><p>We present a systematic methodology to study biocompatibility and degradation processes in those implants, exposing unambiguously the severe degradation of the protective oxide layer that should guide further studies aimed at increasing the implants’ resistance to their biological environment.</p><p>The results reported herein do not differentiate between implants of different origins, make and/or patients’ history, so that these results confer a definite generality to the protective layer's degradation related to peri-implantitis.</p></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666523923001873/pdfft?md5=2690a92269c940cb1b4b2eb64354a22b&pid=1-s2.0-S2666523923001873-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523923001873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523923001873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钛和钛合金被认为是生物相容性材料。但是,当环境和/或工作条件发生变化时,生物材料会发生什么变化呢?本研究旨在确定钛牙科种植体在暴露于种植体周围炎特有的炎症条件后,其表面化学和形态的变化。使用高分辨率分析显微镜方法(SEM、Tof-SIMS 和 S/TEM),在微米和纳米两个不同尺度上对未使用(参考)和取回的牙科植入体的表面进行了系统比较。在这些植入物中,观察到(保护性)氧化层受到了严重的纳米级破坏,包括厚度、成分和原子排列的变化(非晶化),这与参考植入物的情况不同。我们提出了一种系统的方法来研究这些植入物的生物相容性和降解过程,明确揭示了保护性氧化层的严重降解,这将指导进一步的研究,以提高植入物对生物环境的耐受性。本文所报告的结果不区分不同来源、制造和/或患者病史的种植体,因此这些结果对与种植体周围炎相关的保护层降解具有明确的普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The chemical and microstructural signature of peri-implantitis on titanium dental implants’ surface

Titanium and titanium alloys are deemed to be biocompatible materials. But what happens to the biomaterial when the environment and/or the working conditions change? This study aims to identify changes in the surface chemistry and morphology of retrieved titanium dental implants after exposure to the inflammatory conditions that are characteristic of peri-implantitis. The surface of unused (reference) and retrieved dental implants are systematically compared at two distinct scales, namely micron and nano, using high-resolution analysis microscopic methods (SEM, Tof-SIMS and S/TEM).

At the micron scale, a profusion of (micron-size) metallic particles were observed only on the top area of the retrieved implants. For those implants, significant nanoscale damage to the (protective) oxide layer was observed, consisting of changes in thickness, composition, and atomic arrangement (amorphization), as opposed to that of the reference implants. An organic compound, denoted by CNx, was found to infiltrate the oxide layer, rendering it significantly thicker, porous, and weak with evidence of delamination.

We present a systematic methodology to study biocompatibility and degradation processes in those implants, exposing unambiguously the severe degradation of the protective oxide layer that should guide further studies aimed at increasing the implants’ resistance to their biological environment.

The results reported herein do not differentiate between implants of different origins, make and/or patients’ history, so that these results confer a definite generality to the protective layer's degradation related to peri-implantitis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
期刊最新文献
Performance analysis of turning operation parameters empirically on Delrin Surface Engineered 2D Materials based Platforms for Advanced Technologies The essential synergy between experiments and theory in applied surface science Manufacturing and properties characterization of Ti patterned coatings for water electrolyzers by CSAM Exploring the role of edges in surface functionalization and stability of plasma-modified carbon materials: Experimental and DFT insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1