通过掺锰/掺菲双重掺杂优化 Na4Fe3(PO4)2P2O7 阴极的电子自旋态以提高钠的储存能力

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2023-12-12 DOI:10.1002/adfm.202309701
Yukun Xi, Xiaoxue Wang, Hui Wang, Mingjun Wang, Guangjin Wang, Junqi Peng, Ningjing Hou, Xing Huang, Yanyan Cao, Zihao Yang, Dongzhu Liu, Xiaohua Pu, Guiqiang Cao, Ruixian Duan, Wenbin Li, Jingjing Wang, Kun Zhang, Kaihua Xu, Jiujun Zhang, Xifei Li
{"title":"通过掺锰/掺菲双重掺杂优化 Na4Fe3(PO4)2P2O7 阴极的电子自旋态以提高钠的储存能力","authors":"Yukun Xi,&nbsp;Xiaoxue Wang,&nbsp;Hui Wang,&nbsp;Mingjun Wang,&nbsp;Guangjin Wang,&nbsp;Junqi Peng,&nbsp;Ningjing Hou,&nbsp;Xing Huang,&nbsp;Yanyan Cao,&nbsp;Zihao Yang,&nbsp;Dongzhu Liu,&nbsp;Xiaohua Pu,&nbsp;Guiqiang Cao,&nbsp;Ruixian Duan,&nbsp;Wenbin Li,&nbsp;Jingjing Wang,&nbsp;Kun Zhang,&nbsp;Kaihua Xu,&nbsp;Jiujun Zhang,&nbsp;Xifei Li","doi":"10.1002/adfm.202309701","DOIUrl":null,"url":null,"abstract":"<p>A NASICON-type Mn/F dual-doping Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> cathode material is successfully synthesized via a spray drying method. A medium-spin of Fe is measured by DFT calculation, X-ray absorption near edge structure (XANES), temperature-dependent magnetization susceptibility (M−T) measurement, and electron paramagnetic resonance (EPR) tests. It indicates that the <i>e</i><sub>g</sub> orbital occupation of Fe<sup>2+</sup> can be finely regulated, thus optimizing the bond strength between the oxidation and reduction processes. Furthermore, from UV−vis DRS and four-point probe conductivity measurements, it can be seen that, after adjusting the electron spin states, the band gap of the material has decreased from 1.01 to 0.80 eV, and the electronic conductivity has increased from 8.5 to 24.4 µS cm<sup>−1</sup>, thereby leading to competitive electrochemical performance. The as-optimized Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> displays both excellent rate performance (121.0 and 104.9 mAh g<sup>−1</sup> at 0.1 C and 5 C, respectively) and outstanding cycling stability (88.5% capacity retention after 1000 cycles at 1 C). The results indicate that this low-cost Mn/F dual-doping Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> cathode can be a competitive candidate material for sodium-ion batteries.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the Electron Spin States of Na4Fe3(PO4)2P2O7 Cathodes via Mn/F Dual-Doping for Enhanced Sodium Storage\",\"authors\":\"Yukun Xi,&nbsp;Xiaoxue Wang,&nbsp;Hui Wang,&nbsp;Mingjun Wang,&nbsp;Guangjin Wang,&nbsp;Junqi Peng,&nbsp;Ningjing Hou,&nbsp;Xing Huang,&nbsp;Yanyan Cao,&nbsp;Zihao Yang,&nbsp;Dongzhu Liu,&nbsp;Xiaohua Pu,&nbsp;Guiqiang Cao,&nbsp;Ruixian Duan,&nbsp;Wenbin Li,&nbsp;Jingjing Wang,&nbsp;Kun Zhang,&nbsp;Kaihua Xu,&nbsp;Jiujun Zhang,&nbsp;Xifei Li\",\"doi\":\"10.1002/adfm.202309701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A NASICON-type Mn/F dual-doping Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> cathode material is successfully synthesized via a spray drying method. A medium-spin of Fe is measured by DFT calculation, X-ray absorption near edge structure (XANES), temperature-dependent magnetization susceptibility (M−T) measurement, and electron paramagnetic resonance (EPR) tests. It indicates that the <i>e</i><sub>g</sub> orbital occupation of Fe<sup>2+</sup> can be finely regulated, thus optimizing the bond strength between the oxidation and reduction processes. Furthermore, from UV−vis DRS and four-point probe conductivity measurements, it can be seen that, after adjusting the electron spin states, the band gap of the material has decreased from 1.01 to 0.80 eV, and the electronic conductivity has increased from 8.5 to 24.4 µS cm<sup>−1</sup>, thereby leading to competitive electrochemical performance. The as-optimized Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> displays both excellent rate performance (121.0 and 104.9 mAh g<sup>−1</sup> at 0.1 C and 5 C, respectively) and outstanding cycling stability (88.5% capacity retention after 1000 cycles at 1 C). The results indicate that this low-cost Mn/F dual-doping Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> cathode can be a competitive candidate material for sodium-ion batteries.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202309701\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202309701","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过喷雾干燥法成功合成了一种 NASICON 型 Mn/F 双掺杂 Na4Fe3(PO4)2P2O7 阴极材料。通过 DFT 计算、X 射线吸收近边缘结构 (XANES)、随温度变化的磁化率 (M-T) 测量和电子顺磁共振 (EPR) 测试测量了铁的中等自旋。结果表明,Fe2+ 的eg 轨道占据可以进行精细调节,从而优化氧化和还原过程之间的键强度。此外,从紫外可见 DRS 和四点探针电导率测量结果可以看出,调整电子自旋态后,材料的带隙从 1.01 eV 减小到 0.80 eV,电子电导率从 8.5 µS cm-1 提高到 24.4 µS cm-1,从而实现了具有竞争力的电化学性能。优化后的 Na4Fe3(PO4)2P2O7 不仅具有优异的速率性能(0.1 C 和 5 C 条件下分别为 121.0 和 104.9 mAh g-1),而且具有出色的循环稳定性(1 C 条件下循环 1000 次后容量保持率为 88.5%)。研究结果表明,这种低成本的锰/钛双掺杂 Na4Fe3(PO4)2P2O7 正极可作为钠离子电池的一种有竞争力的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing the Electron Spin States of Na4Fe3(PO4)2P2O7 Cathodes via Mn/F Dual-Doping for Enhanced Sodium Storage

A NASICON-type Mn/F dual-doping Na4Fe3(PO4)2P2O7 cathode material is successfully synthesized via a spray drying method. A medium-spin of Fe is measured by DFT calculation, X-ray absorption near edge structure (XANES), temperature-dependent magnetization susceptibility (M−T) measurement, and electron paramagnetic resonance (EPR) tests. It indicates that the eg orbital occupation of Fe2+ can be finely regulated, thus optimizing the bond strength between the oxidation and reduction processes. Furthermore, from UV−vis DRS and four-point probe conductivity measurements, it can be seen that, after adjusting the electron spin states, the band gap of the material has decreased from 1.01 to 0.80 eV, and the electronic conductivity has increased from 8.5 to 24.4 µS cm−1, thereby leading to competitive electrochemical performance. The as-optimized Na4Fe3(PO4)2P2O7 displays both excellent rate performance (121.0 and 104.9 mAh g−1 at 0.1 C and 5 C, respectively) and outstanding cycling stability (88.5% capacity retention after 1000 cycles at 1 C). The results indicate that this low-cost Mn/F dual-doping Na4Fe3(PO4)2P2O7 cathode can be a competitive candidate material for sodium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Masthead: (Adv. Funct. Mater. 43/2024) Fabrication of Robust Forward Osmosis Membrane by Assembling FeOxCly Nanoparticles Biomimetic Mineralized Organic–Inorganic Hybrid Scaffolds From Microfluidic 3D Printing for Bone Repair Modulating NFO@N-MWCNTs/CC Interfaces to Construct Multilevel Synergistic Sites (Ni/Fe-O-N-C) for Multi-Heavy Metal Ions Sensing MOF-Based Electromagnetic Shields Multiscale Design: Nanoscale Chemistry, Microscale Assembly, and Macroscale Manufacturing (Adv. Funct. Mater. 43/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1