{"title":"中国长江下游武威盆地的地壳电结构及其地质影响","authors":"Xiaobo Zhang, Penghui Zhang, Meixing He, Dashuang He, Fagen Pei, Yaoyang Zhang, Yan Peng","doi":"10.1007/s12583-022-1682-5","DOIUrl":null,"url":null,"abstract":"<p>The Wuwei Basin is one of the most important oil- and gas-bearing basins in the Meso-Cenozoic basin groups in the Lower Yangtze River region. It has great shale gas resource prospects. The formation mechanism of this basin is poorly studied for lack of constraining data for deep structures. In this paper, a crustal electrical structure model of the Wuwei Basin and the adjacent areas is constructed based on the two-dimensional inversion of a magnetotelluric (MT) sounding profile achieved with the nonlinear conjugate gradient method. The results show that large-scale low-resistance bodies have developed in the underlying middle and lower crust of the Wuwei Basin, and are different from the uplifts on the two sides according to their high-resistance electrical characteristics. The electrical structure and regional geological and geophysical data suggest that the peak zone of the Chuzhou-Chaohu foreland fold-and-thrust belt is located on the east bank of the Yangtze River (Wuhu Section), which, together with the main thrust fault belt in the east, forms a typical thrust structure belt. An early Yanshanian sinistral strike-slip fault developed in the deep part of the Wuwei Basin, which may have controlled the formation and evolution of the basin, whereas the tectonic inversion of the early-developed thrust faults is relatively weak. These findings provide a geophysical basis for future studies of basin tectonic evolution and regional tectonic frameworks.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":"59 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crustal Electrical Structure of the Wuwei Basin, Lower Yangtze Region of China, and Its Geological Implications\",\"authors\":\"Xiaobo Zhang, Penghui Zhang, Meixing He, Dashuang He, Fagen Pei, Yaoyang Zhang, Yan Peng\",\"doi\":\"10.1007/s12583-022-1682-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Wuwei Basin is one of the most important oil- and gas-bearing basins in the Meso-Cenozoic basin groups in the Lower Yangtze River region. It has great shale gas resource prospects. The formation mechanism of this basin is poorly studied for lack of constraining data for deep structures. In this paper, a crustal electrical structure model of the Wuwei Basin and the adjacent areas is constructed based on the two-dimensional inversion of a magnetotelluric (MT) sounding profile achieved with the nonlinear conjugate gradient method. The results show that large-scale low-resistance bodies have developed in the underlying middle and lower crust of the Wuwei Basin, and are different from the uplifts on the two sides according to their high-resistance electrical characteristics. The electrical structure and regional geological and geophysical data suggest that the peak zone of the Chuzhou-Chaohu foreland fold-and-thrust belt is located on the east bank of the Yangtze River (Wuhu Section), which, together with the main thrust fault belt in the east, forms a typical thrust structure belt. An early Yanshanian sinistral strike-slip fault developed in the deep part of the Wuwei Basin, which may have controlled the formation and evolution of the basin, whereas the tectonic inversion of the early-developed thrust faults is relatively weak. These findings provide a geophysical basis for future studies of basin tectonic evolution and regional tectonic frameworks.</p>\",\"PeriodicalId\":15607,\"journal\":{\"name\":\"Journal of Earth Science\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12583-022-1682-5\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-022-1682-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Crustal Electrical Structure of the Wuwei Basin, Lower Yangtze Region of China, and Its Geological Implications
The Wuwei Basin is one of the most important oil- and gas-bearing basins in the Meso-Cenozoic basin groups in the Lower Yangtze River region. It has great shale gas resource prospects. The formation mechanism of this basin is poorly studied for lack of constraining data for deep structures. In this paper, a crustal electrical structure model of the Wuwei Basin and the adjacent areas is constructed based on the two-dimensional inversion of a magnetotelluric (MT) sounding profile achieved with the nonlinear conjugate gradient method. The results show that large-scale low-resistance bodies have developed in the underlying middle and lower crust of the Wuwei Basin, and are different from the uplifts on the two sides according to their high-resistance electrical characteristics. The electrical structure and regional geological and geophysical data suggest that the peak zone of the Chuzhou-Chaohu foreland fold-and-thrust belt is located on the east bank of the Yangtze River (Wuhu Section), which, together with the main thrust fault belt in the east, forms a typical thrust structure belt. An early Yanshanian sinistral strike-slip fault developed in the deep part of the Wuwei Basin, which may have controlled the formation and evolution of the basin, whereas the tectonic inversion of the early-developed thrust faults is relatively weak. These findings provide a geophysical basis for future studies of basin tectonic evolution and regional tectonic frameworks.
期刊介绍:
Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences.
Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event.
The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.